Guignard, Quentin On the ramified class field theory of relative curves. (English) Zbl 1460.11095 Algebra Number Theory 13, No. 6, 1299-1326 (2019). Summary: We generalize Deligne’s approach to tame geometric class field theory to the case of a relative curve, with arbitrary ramification. Cited in 1 Document MSC: 11G45 Geometric class field theory Keywords:geometric class field theory; global class field theory; ramification PDF BibTeX XML Cite \textit{Q. Guignard}, Algebra Number Theory 13, No. 6, 1299--1326 (2019; Zbl 1460.11095) Full Text: DOI arXiv OpenURL References: [1] 10.1007/978-3-642-51438-8 [2] 10.4171/RSMUP/130-1 · Zbl 1317.14100 [3] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 17, 5 (1963) [4] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 28, 5 (1966) [5] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 32, 5 (1967) [6] ; Lang, Bull. Soc. Math. France, 84, 385 (1956) [7] ; Laumon, Automorphic forms, Shimura varieties, and L-functions, I. Perspect. Math., 10, 227 (1990) · Zbl 0773.11032 [8] ; Moret-Bailly, Pinceaux de variétés abéliennes. Astérisque, 129 (1985) · Zbl 0595.14032 [9] 10.2307/1969715 · Zbl 0058.37002 [10] ; Serre, Groupes algébriques et corps de classes. Publ. Inst. Math. Univ. Nancago, 7 (1959) · Zbl 0097.35604 [11] ; Serre, Bull. Soc. Math. France, 89, 105 (1961) [12] ; Serre, Corps locaux. Publ. Inst. Math. Univ. Nancago, 8 (1962) · Zbl 0137.02601 [13] ; Grothendieck, Revêtements étales et groupe fondamental. Lecture Notes in Math., 224 (1971) · Zbl 0234.14002 [14] ; Artin, Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX-XIX. Lecture Notes in Math., 305 (1973) [15] 10.24033/bsmf.2640 · Zbl 1362.11096 [16] 10.2140/ant.2019.13.1327 · Zbl 1461.11101 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.