×

Weyl bound for \(p\)-power twist of \(\mathrm{GL}(2)L\)-functions. (English) Zbl 1461.11077

Summary: Let \(f\) be a cuspidal eigenform (holomorphic or Maass) for the congruence group \(\Gamma_0(N)\) with \(N\) square-free. Let \(p\) be a prime and let \(\chi\) be a primitive character of modulus \(p^{3r}\). We shall prove the Weyl-type subconvex bound \[ L\bigl(\frac{1}{2}+it,f\otimes\chi\bigr)\ll_{f,t,\varepsilon}p^{r+\varepsilon}, \] where \(\varepsilon>0\) is any positive real number.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F37 Forms of half-integer weight; nonholomorphic modular forms
11M41 Other Dirichlet series and zeta functions
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1515/CRELLE.2008.058 · Zbl 1193.11044
[2] ; Blomer, Ann. Sci. Éc. Norm. Supér. (4), 48, 561 (2015)
[3] 10.1090/jams/860 · Zbl 1352.11065
[4] 10.1112/plms/s3-13.1.524 · Zbl 0123.04404
[5] ; Bykovskii, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov., 226, 14 (1996)
[6] 10.2307/121132 · Zbl 0973.11056
[7] 10.1007/BF01232422 · Zbl 0765.11038
[8] 10.1112/S0025579300012377 · Zbl 0497.10016
[9] 10.1007/BF01578069 · Zbl 0362.10035
[10] 10.1017/S0017089500030962 · Zbl 0824.11047
[11] 10.1090/gsm/017
[12] 10.1090/coll/053
[13] ; Iwaniec, Number theory in progress, 941 (1999)
[14] ; Jutila, Lectures on a method in the theory of exponential sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 80 (1987) · Zbl 0671.10031
[15] 10.1215/S0012-7094-02-11416-1 · Zbl 1035.11018
[16] 10.1007/BF01188074 · JFM 50.0232.01
[17] 10.1515/crll.1988.384.192 · Zbl 0627.10017
[18] ; Meurman, Number theory. Colloq. Math. Soc. János Bolyai, 51, 325 (1990)
[19] 10.1112/S0010437X15007381
[20] 10.1007/s00208-013-0968-4 · Zbl 1312.11037
[21] 10.1353/ajm.2015.0018 · Zbl 1344.11042
[22] 10.1090/jams/843 · Zbl 1354.11036
[23] 10.4007/annals.2015.182.2.6 · Zbl 1333.11046
[24] ; Munshi, Geometry, algebra, number theory, and their information technology applications. Springer Proc. Math. Stat., 251, 273 (2018)
[25] 10.1007/BF01475864 · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.