Castaño Domínguez, Alberto; Reichelt, Thomas; Sevenheck, Christian Examples of Hypergeometric twistor \(\mathcal{D}\)-modules. (English) Zbl 1440.14099 Algebra Number Theory 13, No. 6, 1415-1442 (2019). Summary: We show that certain one-dimensional hypergeometric differential systems underlie objects of the category of irregular mixed Hodge modules, which was recently introduced by C. Sabbah [Mém. Soc. Math. Fr., Nouv. Sér. 156, 1–126 (2018; Zbl 1422.14003)], and compute the irregular Hodge filtration for them. We also provide a comparison theorem between two different types of Fourier-Laplace transformation for algebraic integrable twistor \(\mathcal{D}\)-modules. Cited in 1 ReviewCited in 2 Documents MSC: 14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials 32C38 Sheaves of differential operators and their modules, \(D\)-modules Keywords:\(\mathcal{D}\)-modules; irregular Hodge filtration; twistor \(\mathcal{D}\)-modules; Fourier-Laplace transformation; hypergeometric D-modules Citations:Zbl 1422.14003 PDF BibTeX XML Cite \textit{A. Castaño Domínguez} et al., Algebra Number Theory 13, No. 6, 1415--1442 (2019; Zbl 1440.14099) Full Text: DOI arXiv OpenURL References: [1] 10.1515/crelle-2014-0118 · Zbl 1453.32010 [2] 10.1093/imrn/rnx044 · Zbl 1408.32017 [3] ; Gelfand, Dokl. Akad. Nauk SSSR, 295, 14 (1987) [4] ; Gelfand, Funktsional. Anal. i Prilozhen., 23, 12 (1989) [5] 10.1112/S0010437X09004217 · Zbl 1238.32022 [6] 10.1515/9781400882434 · Zbl 0731.14008 [7] 10.4310/jdg/1483655860 · Zbl 1361.35172 [8] 10.1090/S0894-0347-05-00488-1 · Zbl 1095.13033 [9] ; Mochizuki, Wild harmonic bundles and wild pure twistor D-modules. Astérisque, 340 (2011) · Zbl 1245.32001 [10] 10.1007/978-3-319-10088-3 · Zbl 1356.32002 [11] 10.1112/S0010437X13007744 · Zbl 1315.14016 [12] ; Sabbah, Irregular Hodge theory. Mém. Soc. Math. Fr. (N.S.), 156 (2018) · Zbl 1422.14003 [13] 10.1017/fms.2015.8 · Zbl 1319.14028 [14] 10.1016/j.jalgebra.2008.09.010 · Zbl 1181.13023 [15] ; Serre, Ann. Inst. Fourier, Grenoble, 6, 1 (1955-1956) [16] 10.1007/s00229-013-0642-x · Zbl 1291.14040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.