×

Examples of Hypergeometric twistor \(\mathcal{D}\)-modules. (English) Zbl 1440.14099

Summary: We show that certain one-dimensional hypergeometric differential systems underlie objects of the category of irregular mixed Hodge modules, which was recently introduced by C. Sabbah [Mém. Soc. Math. Fr., Nouv. Sér. 156, 1–126 (2018; Zbl 1422.14003)], and compute the irregular Hodge filtration for them. We also provide a comparison theorem between two different types of Fourier-Laplace transformation for algebraic integrable twistor \(\mathcal{D}\)-modules.

MSC:

14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
32C38 Sheaves of differential operators and their modules, \(D\)-modules

Citations:

Zbl 1422.14003
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1515/crelle-2014-0118 · Zbl 1453.32010
[2] 10.1093/imrn/rnx044 · Zbl 1408.32017
[3] ; Gelfand, Dokl. Akad. Nauk SSSR, 295, 14 (1987)
[4] ; Gelfand, Funktsional. Anal. i Prilozhen., 23, 12 (1989)
[5] 10.1112/S0010437X09004217 · Zbl 1238.32022
[6] 10.1515/9781400882434 · Zbl 0731.14008
[7] 10.4310/jdg/1483655860 · Zbl 1361.35172
[8] 10.1090/S0894-0347-05-00488-1 · Zbl 1095.13033
[9] ; Mochizuki, Wild harmonic bundles and wild pure twistor D-modules. Astérisque, 340 (2011) · Zbl 1245.32001
[10] 10.1007/978-3-319-10088-3 · Zbl 1356.32002
[11] 10.1112/S0010437X13007744 · Zbl 1315.14016
[12] ; Sabbah, Irregular Hodge theory. Mém. Soc. Math. Fr. (N.S.), 156 (2018) · Zbl 1422.14003
[13] 10.1017/fms.2015.8 · Zbl 1319.14028
[14] 10.1016/j.jalgebra.2008.09.010 · Zbl 1181.13023
[15] ; Serre, Ann. Inst. Fourier, Grenoble, 6, 1 (1955-1956)
[16] 10.1007/s00229-013-0642-x · Zbl 1291.14040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.