×

Congruences of parahoric group schemes. (English) Zbl 1460.22006

Summary: Let \(F\) be a nonarchimedean local field and let \(T\) be a torus over \(F\). With \(\mathcal{T}^{NR}\) denoting the Néron-Raynaud model of \(T\), a result of C.-L. Chai and J.-K. Yu [Ann. Math. (2) 154, No. 2, 347–382 (2001; Zbl 1098.14014)] asserts that the model \(\mathcal{T}^{NR}\times_{\mathfrak{O}_F}\mathfrak{O}_F/\mathfrak{p}_F^m\) is canonically determined by \((\mathrm{Tr}_l(F),\Lambda)\) for \(l\gg m\), where \(\mathrm{Tr}_l(F)=(\mathfrak{O}_F/\mathfrak{p}_F^l,\mathfrak{p}_F/\mathfrak{p}_F^{l+1},\varepsilon)\) with \(\epsilon\) denoting the natural projection of \(\mathfrak{p}_F/\mathfrak{p}_F^{l+1}\) on \(\mathfrak{p}_F/\mathfrak{p}_F^l\), and \(\Lambda:=X_*(T)\).
In this article we prove an analogous result for parahoric group schemes attached to facets in the Bruhat-Tits building of a connected reductive group over \(F\).

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields

Citations:

Zbl 1098.14014
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1186/s40687-016-0079-4 · Zbl 1394.22015
[2] 10.1016/S0012-9593(02)01106-0 · Zbl 1092.11025
[3] 10.1007/978-3-642-51438-8
[4] 10.1007/BF02715544 · Zbl 0254.14017
[5] ; Bruhat, Inst. Hautes Études Sci. Publ. Math., 60, 197 (1984)
[6] 10.2307/3062100 · Zbl 1098.14014
[7] 10.4007/annals.2009.169.795 · Zbl 1193.11111
[8] ; Deligne, Representations of reductive groups over a local field, 119 (1984)
[9] 10.1353/ajm.2015.0045 · Zbl 1332.22018
[10] 10.1017/S147474801500033X · Zbl 1398.11079
[11] 10.1090/cbms/059
[12] 10.1007/BF02792537 · Zbl 0634.22010
[13] 10.1007/BFb0094594 · Zbl 0935.20034
[14] 10.1006/jabr.2000.8524 · Zbl 0970.22014
[15] 10.1007/978-1-4757-5673-9
[16] 10.1007/BF02684397 · Zbl 0136.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.