netprioR: a probabilistic model for integrative hit prioritisation of genetic screens. (English) Zbl 1420.92078

Summary: In the post-genomic era of big data in biology, computational approaches to integrate multiple heterogeneous data sets become increasingly important. Despite the availability of large amounts of omics data, the prioritisation of genes relevant for a specific functional pathway based on genetic screening experiments, remains a challenging task. Here, we introduce netprioR, a probabilistic generative model for semi-supervised integrative prioritisation of hit genes. The model integrates multiple network data sets representing gene-gene similarities and prior knowledge about gene functions from the literature with gene-based covariates, such as phenotypes measured in genetic perturbation screens, for example, by RNA interference or CRISPR/Cas9. We evaluate netprioR on simulated data and show that the model outperforms current state-of-the-art methods in many scenarios and is on par otherwise. In an application to real biological data, we integrate 22 network data sets, 1784 prior knowledge class labels and 3840 RNA interference phenotypes in order to prioritise novel regulators of Notch signalling in Drosophila melanogaster. The biological relevance of our predictions is evaluated using in silico and in vivo experiments. An efficient implementation of netprioR is available as an R package at http://bioconductor.org/packages/netprioR..


92D10 Genetics and epigenetics
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI


[1] Aerts, S., D. Lambrechts, S. Maity, P. Van Loo, B. Coessens, F. De Smet, L.-C. Tranchevent, B. De Moor, P. Marynen, B. Hassan, P. Carmeliet and Y. Moreau (2006): “Gene prioritization through genomic data fusion,” Nat. Biotechnol., 24, 537-544.
[2] C. M. Bishop (2006): Pattern recognition and machine learning (information science and statistics), Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[3] Chen, J., E. E. Bardes, B. J. Aronow and A. G. Jegga (2009): “ToppGene Suite for gene list enrichment analysis and candidate gene prioritization,” Nucleic Acids Res., 37, W305-W311.
[4] Chintapalli, V. R., J. Wang and J. A. T. Dow (2007): “Using FlyAtlas to identify better Drosophila melanogaster models of human disease,” Nat. Genet., 39, 715-720.
[5] Costanzo, M., A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier, H. Ding, J. L. Y. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R. P. St Onge, B. VanderSluis, T. Makhnevych, F. J. Vizeacoumar, S. Alizadeh, S. Bahr, R. L. Brost, Y. Chen, M. Cokol, R. Deshpande, Z. Li, Z.-Y. Lin, W. Liang, M. Marback, J. Paw, B.-J. San Luis, E. Shuteriqi, A. H. Y. Tong, N. van Dyk, I. M. Wallace, J. A. Whitney, M. T. Weirauch, G. Zhong, H. Zhu, W. A. Houry, M. Brudno, S. Ragibizadeh, B. Papp, C. Pál, F. P. Roth, G. Giaever, C. Nislow, O. G. Troyanskaya, H. Bussey, G. D. Bader, A.-C. Gingras, Q. D. Morris, P. M. Kim, C. A. Kaiser, C. L. Myers, B. J. Andrews and C. Boone (2010): “The genetic landscape of a cell,” Science, 327, 425-431.
[6] Cristianini, N., J. Kandola, A. Elisseeff and J. Shawe-Taylor (2002): “On kernel-target alignment.” In: Advances in Neural Information Processing Systems 14. Berlin, Heidelberg: MIT Press. pp. 367-373.
[7] Dimitrakopoulos, C., S. K. Hindupur, L. Häfliger, J. Behr, H. Montazeri, M. N. Hall and N. Beerenwinkel (2018): “Network-based integration of multi-omics data for prioritizing cancer genes,” Bioinformatics, 34, 2441-2448.
[8] Forbes, S. A., D. Beare, P. Gunasekaran, K. Leung, N. Bindal, H. Boutselakis, M. Ding, S. Bamford, C. Cole, S. Ward, C. Y. Kok, M. Jia, T. De, J. W. Teague, M. R. Stratton, U. McDermott and P. J. Campbell (2015): “COSMIC: exploring the world’s knowledge of somatic mutations in human cancer,” Nucleic Acids Res., 43, D805-D811.
[9] Formstecher, E., S. Aresta, V. Collura, A. Hamburger, A. Meil, A. Trehin, C. Reverdy, V. Betin, S. Maire, C. Brun, B. Jacq, M. Arpin, Y. Bellaiche, S. Bellusci, P. Benaroch, M. Bornens, R. Chanet, P. Chavrier, O. Delattre, V. Doye, R. Fehon, G. Faye, T. Galli, J.-A. Girault, B. Goud, J. de Gunzburg, L. Johannes, M.-P. Junier, V. Mirouse, A. Mukherjee, D. Papadopoulo, F. Perez, A. Plessis, C. Rossé, S. Saule, D. Stoppa-Lyonnet, A. Vincent, M. White, P. Legrain, J. Wojcik, J. Camonis and L. Daviet (2005): “Protein interaction mapping: a Drosophila case study,” Genome Research, 15, 376-384.
[10] Friedman, A. A., G. Tucker, R. Singh, D. Yan, A. Vinayagam, Y. Hu, R. Binari, P. Hong, X. Sun, M. Porto, S. Pacifico, T. Murali, R. L. Finley, J. M. Asara, B. Berger and N. Perrimon (2011): “Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling,” Sci Signal, 4, rs10-rs10.
[11] Giot, L., J. S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y. L. Hao, C. E. Ooi, B. Godwin, E. Vitols, G. Vijayadamodar, P. Pochart, H. Machineni, M. Welsh, Y. Kong, B. Zerhusen, R. Malcolm, Z. Varrone, A. Collis, M. Minto, S. Burgess, L. McDaniel, E. Stimpson, F. Spriggs, J. Williams, K. Neurath, N. Ioime, M. Agee, E. Voss, K. Furtak, R. Renzulli, N. Aanensen, S. Carrolla, E. Bickelhaupt, Y. Lazovatsky, A. DaSilva, J. Zhong, C. A. Stanyon, R. L. Finley, K. P. White, M. Braverman, T. Jarvie, S. Gold, M. Leach, J. Knight, R. A. Shimkets, M. P. McKenna, J. Chant and J. M. Rothberg (2003): “A protein interaction map of Drosophila melanogaster,” Science, 302, 1727-1736.
[12] Graveley, B. R., A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin, L. Yang, C. G. Artieri, M. J. van Baren, N. Boley, B. W. Booth, J. B. Brown, L. Cherbas, C. A. Davis, A. Dobin, R. Li, W. Lin, J. H. Malone, N. R. Mattiuzzo, D. Miller, D. Sturgill, B. B. Tuch, C. Zaleski, D. Zhang, M. Blanchette, S. Dudoit, B. Eads, R. E. Green, A. Hammonds, L. Jiang, P. Kapranov, L. Langton, N. Perrimon, J. E. Sandler, K. H. Wan, A. Willingham, Y. Zhang, Y. Zou, J. Andrews, P. J. Bickel, S. E. Brenner, M. R. Brent, P. Cherbas, T. R. Gingeras, R. A. Hoskins, T. C. Kaufman, B. Oliver and S. E. Celniker (2011): “The developmental transcriptome of Drosophila melanogaster,” Nature, 471, 473-479.
[13] Guruharsha, K. G., J.-F. Rual, B. Zhai, J. Mintseris, P. Vaidya, N. Vaidya, C. Beekman, C. Wong, D. Y. Rhee, O. Cenaj, E. McKillip, S. Shah, M. Stapleton, K. H. Wan, C. Yu, B. Parsa, J. W. Carlson, X. Chen, B. Kapadia, K. VijayRaghavan, S. P. Gygi, S. E. Celniker, R. A. Obar and S. Artavanis-Tsakonas (2011): “A protein complex network of Drosophila melanogaster,” Cell, 147, 690-703.
[14] Guruharsha, K. G., M. W. Kankel and S. Artavanis-Tsakonas (2012): “The Notch signalling system: recent insights into the complexity of a conserved pathway,” Nat. Rev. Genet., 13, 654-666.
[15] K. Horan, C. Jang, J. Bailey-Serres, R. Mittler, C. Shelton, J. F. Harper, Zhu, J.-K., J. C. Cushman, M. Gollery and T. Girke (2008): “Annotating genes of known and unknown function by large-scale coexpression analysis,” Plant Physiol., 147, 41-57.
[16] Kato, T., H. Kashima and M. Sugiyama (2009): “Robust label propagation on multiple networks,” IEEE Trans. Neural Netw., 20, 35-44.
[17] Leiserson, M. D. M., F. Vandin, H.-T. Wu, J. R. Dobson, J. V. Eldridge, J. L. Thomas, A. Papoutsaki, Y. Kim, B. Niu, M. McLellan, M. S. Lawrence, A. Gonzalez-Perez, D. Tamborero, Y. Cheng, G. A. Ryslik, N. Lopez-Bigas, G. Getz, L. Ding and B. J. Raphael (2015): “Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes,” Nat. Genet., 47, 106-114.
[18] Moreau, Y. and L.-C. Tranchevent (2012): “Computational tools for prioritizing candidate genes: boosting disease gene discovery,” Nat. Rev. Genet., 13, 523-536.
[19] Mostafavi, S., D. Ray, D. Warde-Farley, C. Grouios and Q. Morris (2008): “GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function,” Genome Biology, 9(Suppl 1), S4.
[20] Park, T. and G. Casella (2008): “The bayesian lasso,” J. Am. Stat. Assoc., 103, 681-686. · Zbl 1330.62292
[21] Rämö, P., A. Drewek, C. Arrieumerlou, N. Beerenwinkel, H. Ben-Tekaya, B. Cardel, A. Casanova, R. Conde-Alvarez, P. Cossart, G. Csúcs, S. Eicher, M. Emmenlauer, U. Greber, W.-D. Hardt, A. Helenius, C. Kasper, A. Kaufmann, S. Kreibich, A. Kühbacher, P. Kunszt, S. H. Low, J. Mercer, D. Mudrak, S. Muntwiler, L. Pelkmans, J. Pizarro-Cerdá, M. Podvinec, E. Pujadas, B. Rinn, V. Rouilly, F. Schmich, J. Siebourg-Polster, B. Snijder, M. Stebler, G. Studer, E. Szczurek, M. Truttmann, C. von Mering, A. Vonderheit, A. Yakimovich, P. Bühlmann and C. Dehio (2014): “Simultaneous analysis of large-scale RNAi screens for pathogen entry,” BMC Genomics, 15, 1162.
[22] Rue, H. and L. Held (2005): Gaussian markov random fields: theory and application. Boca Raton: Chapman & Hall/CRC.
[23] Saj, A., Z. Arziman, D. Stempfle, W. van Belle, U. Sauder, T. Horn, M. Dürrenberger, R. Paro, M. Boutros and G. Merdes (2010): “A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network,” Dev. Cell, 18, 862-876.
[24] Schmich, F., E. Szczurek, S. Kreibich, S. Dilling, D. Andritschke, A. Casanova, S. H. Low, S. Eicher, S. Muntwiler, M. Emmenlauer, P. Rämö, R. Conde-Alvarez, C. von Mering, W.-D. Hardt, C. Dehio and N. Beerenwinkel (2015): “gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens,” Genome Biology, 16, 220.
[25] Stuart, J. M., E. Segal, D. Koller and S. K. Kim (2003): “A gene-coexpression network for global discovery of conserved genetic modules,” Science, 302, 249-255.
[26] Tsuda, K., H. Shin and B. Schölkopf (2005): “Fast protein classification with multiple networks,” Bioinformatics, 21(Suppl 2), ii59-65.
[27] Vembu, S. and Q. Morris (2015): “An Efficient Algorithm to Integrate Network and Attribute Data for Gene Function Prediction,” In: Proceedings of the Pacific Symposium on Biocomputing. pp. 388-399.
[28] Wang, L., Z. Tu and F. Sun (2009): “A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila,” BMC Genomics, 10, 220.
[29] Webber, W., A. Moffat and J. Zobel (2010): “A similarity measure for indefinite rankings,” ACM TOIS, 28. DOI: 10.1145/1852102.1852106.
[30] Yu, J., S. Pacifico, G. Liu and R. L. Finley (2008): “DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions,” BMC Genomics, 9, 461.
[31] Zhang, X., X. Dong, H. Wang, J. Li, B. Yang, J. Zhang and Z.-C. Hua (2014): “FADD regulates thymocyte development at the β-selection checkpoint by modulating Notch signaling,” Cell Death Dis, 5, e1273.
[32] Zhu, X., Z. Ghahramani and J. Lafferty (2003): “Semi-supervised learning using gaussian fields and harmonic functions. ICML, 912-919.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.