×

The integer group determinants for the symmetric group of degree four. (English) Zbl 1451.11115

Summary: For the symmetric group \(S_4\) we determine all the integer values taken by its group determinant when the matrix entries are integers.

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
15B36 Matrices of integers
11C08 Polynomials in number theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] T. Boerkoel and C. Pinner, Minimal group determinants and the Lind-Lehmer problem for dihedral groups, Acta Arith. \bf186 (2018), 377-395. · Zbl 1434.11212
[2] K. Conrad, The origin of representation theory, Enseign. Math. 44 (1998), 361-392. · Zbl 0966.01018
[3] D. De Silva, M. Mossinghoff, V. Pigno and C. Pinner, The Lind-Lehmer constant for certain \(p\)-groups, Math. Comp. 88 (2018), 949-972. · Zbl 1410.11119
[4] D. De Silva and C. Pinner, The Lind-Lehmer constant for \(\mathbb Z_p^n\), Proc. Amer. Math. Soc. 142 (2014), 1935-1941. · Zbl 1294.11185
[5] E. Formanek and D. Sibley, The group determinant determines the group, Proc. Amer. Math. Soc. 112 (1991), 649-656. · Zbl 0742.20008
[6] F.G. Frobenius, Über die Primfaktoren der Gruppendeterminante, Gesam. Abhandl. 3 (1968), 38-77.
[7] T. Hawkins, The origins of the theory of group characters. Arch. Hist. Exact Sci. \bf7 (1971), 142-170. · Zbl 0217.29903
[8] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142 (2010), 79-84. · Zbl 1197.11032
[9] —-, Progress on Olga Taussky-Todd’s circulant problem, Ramanujan J. 28 (2012), 45-60. · Zbl 1271.15002
[10] H. Laquer, Values of circulants with integer entries, pp. 212-217 in A collection of manuscripts related to the Fibonacci sequence, Fibonacci Association, Santa Clara, CA (1980).
[11] D. Lind, Lehmer’s problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), 1411-1416. · Zbl 1056.43005
[12] M. Newman, On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24 (1980), 156-158. · Zbl 0414.15007
[13] —-, Determinants of circulants of prime power order, Lin. Multilin. Alg. 9 (1980), 187-191. · Zbl 0453.12002
[14] V. Pigno and C. Pinner, The Lind-Lehmer constant for cyclic groups of order less than \(892,371,480\), Ramanujan J. 33 (2014), 295-300. · Zbl 1314.11064
[15] C. Pinner and W. Vipismakul, The Lind-Lehmer constant for \(\mathbb Z_m \times \mathbb Z^n_p\), Integers 16 (2016). · Zbl 1414.11129
[16] C. Pinner and C. Smyth, Integer group determinants for small groups, Ramanujan J., arXiv:1806.00199 [math.NT].
[17] J.-P. Serre, Linear representations of finite groups, Grad. Texts Math. 42 (1977).
[18] W. Vipismakul, The stabilizer of the group determinant and bounds for Lehmer’s conjecture on finite abelian groups, Ph.D. dissertation, The University of Texas at Austin (2013).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.