zbMATH — the first resource for mathematics

A basis theorem for the degenerate affine oriented Brauer-Clifford supercategory. (English) Zbl 1470.17005
Summary: We introduce the oriented Brauer-Clifford and degenerate affine oriented Brauer-Clifford supercategories. These are diagrammatically defined monoidal supercategories that provide combinatorial models for certain natural monoidal supercategories of supermodules and endosuperfunctors, respectively, for the Lie superalgebras of type Q. Our main results are basis theorems for these diagram supercategories. We also discuss connections and applications to the representation theory of the Lie superalgebra of type Q.

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
18M05 Monoidal categories, symmetric monoidal categories
Full Text: DOI
[1] Balagovic, M., Daugherty, Z., Entova-Aizenbud, I., Halacheva, I., Hennig, J., Im, M. S., Letzter, G., Norton, E., Serganova, V., and Stroppel, C., The affine VW supercategory. 2018. arxiv:1801.04178.
[2] Benkart, G., Guay, N., Jung, J. H., Kang, S.-J., and Wilcox, S., Quantum walled Brauer-Clifford superalgebras. J. Algebra454(2016), 433-474. https://doi.org/10.1016/j.jalgebra.2015.04.038.
[3] Benson, D. and Doty, S., Schur-Weyl duality over finite fields. Arch. Math. (Basel)93(2009), 425-435. https://doi.org/10.1007/s00013-009-0066-8. · Zbl 1210.20039
[4] Brundan, J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q (n), Adv. Math., 182, 28-77, (2004) · Zbl 1048.17003
[5] Brundan, J., On the definition of Heisenberg category, Algebr. Comb., 1, 523-544, (2018) · Zbl 1457.17009
[6] Brundan, J., Representations of oriented skein categories. 2017. arxiv:1712.08953.
[7] Brundan, J., Comes, J., Nash, D., and Reynolds, A., A basis theorem for the affine oriented Brauer category and its cyclotomic quotients. Quantum Topol.8(2017), 75-112. https://doi.org/10.4171/QT/87. · Zbl 1419.18011
[8] Brundan, J. and Davidson, N., Type A blocks of super category 𝓞. J. Algebra473(2017), 447-480. https://doi.org/10.1016/j.jalgebra.2016.11.022. · Zbl 1396.17005
[9] Brundan, J. and Davidson, N., Type C blocks of super category 𝓞. 2017. arxiv:1702.05055. · Zbl 1396.17005
[10] Brundan, J. and Ellis, A. P., Monoidal supercategories. Comm. Math. Phys.351(2017), 1045-1089. https://doi.org/10.1007/s00220-017-2850-9.
[11] Brundan, J. and Ellis, A. P., Super Kac-Moody 2-categories. Proc. Lond. Math. Soc.115(2017), no. 5, 925-973. https://doi.org/10.1112/plms.12055. · Zbl 1442.17008
[12] Brundan, J. and Kleshchev, A., Hecke-Clifford superalgebras, crystals of type \( A _{2 l }^{(2)}\) and modular branching rules for \( Ŝ _{ n }\). Represent. Theory5(2001), 317-403. https://doi.org/10.1090/S1088-4165-01-00123-6. · Zbl 1005.17010
[13] Brundan, J. and Kleshchev, A., Projective representations of symmetric groups via Sergeev duality. Math. Z.239(2002), 27-68. https://doi.org/10.1007/s002090100282. · Zbl 1029.20008
[14] Brundan, J. and Kleshchev, A., Modular representations of the supergroup Q (n). I. J. Algebra260(2003), 64-98. https://doi.org/10.1016/S0021-8693(02)00620-8. · Zbl 1027.17004
[15] Chen, C.-W., Reduction method for representations of queer Lie superalgebras, J. Math. Phys., 57, no. 5, (2016) · Zbl 1386.17011
[16] Cheng, S.-J., Kwon, J.-H., and Wang, W., Character formulae for queer Lie superalgebras and canonical bases of types A/C. Comm. Math. Phys.352(2017), 1091-1119. https://doi.org/10.1007/s00220-016-2809-2. · Zbl 1406.17014
[17] Cheng, S.-J. and Wang, W., Dualities and representations of Lie superalgebras. , American Mathematical Society, Providence, RI, 2012. https://doi.org/10.1090/gsm/144.
[18] Coulembier, K. and Mazorchuk, V., The G-centre and gradable derived equivalences. 2017. arxiv:1703.02623.
[19] Du, J. and Wan, J., Presenting queer Schur superalgebras. Int. Math. Res. Not. IMRN (2015), no. 8, 2210-2272. https://doi.org/10.1093/imrn/rnt262. · Zbl 1395.20032
[20] Ellis, A. P. and Lauda, A. D., An odd categorification of \( U _{ q }(sl_2)\). Quantum Topol.7(2016), 329-433. https://doi.org/10.4171/QT/78.
[21] Gao, M., Rui, H., Song, L., and Su, Y., Affine walled Brauer-Clifford superalgebras. 2017. arxiv:1708.05135.
[22] Gao, M., Rui, H., Song, L., and Su, Y., A proof of Comes-Kujawa’s conjecture. 2018. arxiv:1801.09071.
[23] Hill, D., Kujawa, J. R., and Sussan, J., Degenerate affine Hecke-Clifford algebras and type Q Lie superalgebras. Math. Z.268(2011), 1091-1158. https://doi.org/10.1007/s00209-010-0712-7. · Zbl 1231.20005
[24] Jung, J. and Kang, S., Mixed Schur-Weyl-Sergeev duality for queer Lie superalgebras. J. Algebra399(2014), 516-545. https://doi.org/10.1016/j.jalgebra.2013.08.029. · Zbl 1370.17009
[25] Kang, S.-J., Kashiwara, M., and Oh, S.-J., Supercategorification of quantum Kac-Moody algebras. Adv. Math.242(2013), 116-162. https://doi.org/10.1016/j.aim.2013.04.008. · Zbl 1304.17012
[26] Kang, S.-J., Kashiwara, M., and Oh, S.-J., Supercategorification of quantum Kac-Moody algebras II. Adv. Math.265(2014), 169-240. https://doi.org/10.1016/j.aim.2014.07.036.
[27] Kleshchev, A., Linear and projective representations of symmetric groups, (2005), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1080.20011
[28] Kujawa, J. R. and Tharp, B., The marked Brauer category. J. Lond. Math. Soci.95(2017), 393-413. https://doi.org/10.1112/jlms.12015. · Zbl 1427.17015
[29] Nazarov, M., Young’s symmetrizers for projective representations of the symmetric group, Adv. Math., 127, 190-257, (1997) · Zbl 0930.20011
[30] Penkov, I. and Serganova, V., Characters of irreducible G-modules and cohomology of G/P for the Lie supergroup G = Q (N). Algebraic geometry, 7, J. Math. Sci. (New York)84(1997), 1382-1412. https://doi.org/10.1007/BF02399196. · Zbl 0920.17003
[31] Reynolds, A., Representations of the oriented Brauer category. PhD thesis, University of Oregon, Eugene, Oregon, 2015.
[32] Rosso, D. and Savage, A., A general approach to Heisenberg categorification via wreath product algebras. Math. Z.286(2017), 603-655. https://doi.org/10.1007/s00209-016-1776-9. · Zbl 1366.18006
[33] Rouquier, R., Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq., 19, 359-410, (2012) · Zbl 1247.20002
[34] Sergeev, A. N., The centre of enveloping algebra for Lie superalgebra Q (n, C), Lett. Math. Phys., 7, 177-179, (1983) · Zbl 0539.17003
[35] Sergeev, A. N., Tensor algebra of the identity representation as a module over the Lie superalgebras Gl (n, m) and Q (n), Mat. Sb. (N.S.), 123(165), 422-430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.