×

zbMATH — the first resource for mathematics

A two Higgs doublet model for dark matter and neutrino masses. (English) Zbl 1421.81076
Summary: Motivated by the interesting features of Two Higgs Doublet Models (2HDM) we present a 2HDM extension where the stability of dark matter, neutrino masses and the absence of flavor changing interactions are explained by promoting baryon and lepton number to gauge symmetries. Neutrino masses are addressed within the usual type I seesaw mechanism. A vector-like fermion acts as dark matter and it interacts with Standard Model particles via the kinetic and mass mixings between the neutral gauge bosons. We compute the relevant observables such as the dark matter relic density and spin-independent scattering cross section to outline the region of parameter space that obeys current and projected limits from collider and direct detection experiments via thermal and non-thermal dark matter production.
MSC:
81T10 Model quantum field theories
81V25 Other elementary particle theory in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Glashow, S. L., Nucl. Phys., 22, 579, (1961)
[2] Weinberg, S., Phys. Rev. Lett., 19, 1264, (1967)
[3] Tanabashi, M., Phys. Rev. D, 98, Article 030001 pp., (2018)
[4] Aad, G., Phys. Lett. B, 716, 1, (2012)
[5] Chatrchyan, S., Phys. Lett. B, 716, 30, (2012)
[6] Bertone, G.; Hooper, D., Rev. Mod. Phys., 90, Article 045002 pp., (2018)
[7] Fukuda, Y., Phys. Rev. Lett., 81, 1562, (1998)
[8] Apollonio, M., Phys. Lett. B, 466, 415, (1999)
[9] Lee, T. D., Phys. Rev. D. Phys. Rev. D, Phys. Rev. D, 8, 516, (1973)
[10] Gunion, J. F.; Haber, H. E., Phys. Rev. D, 67, Article 075019 pp., (2003)
[11] Davidson, S. M.; Logan, H. E., Phys. Rev. D, 82, Article 115031 pp., (2010)
[12] Nomura, T.; Okada, H., Phys. Rev. D, 97, Article 075038 pp., (2018)
[13] Camargo, D. A.; Delle Rose, L.; Moretti, S.; Queiroz, F. S., (2018)
[14] Turok, N.; Zadrozny, J., Nucl. Phys. B, 358, 471, (1991)
[15] Cline, J. M.; Kainulainen, K.; Vischer, A. P., Phys. Rev. D, 54, 2451, (1996)
[16] Clarke, J. D.; Foot, R.; Volkas, R. R., Phys. Rev. D, 92, Article 033006 pp., (2015)
[17] Antusch, S.; Drees, M.; Kersten, J.; Lindner, M.; Ratz, M., Phys. Lett. B, 525, 130, (2002)
[18] Atwood, D.; Bar-Shalom, S.; Soni, A., Phys. Lett. B, 635, 112, (2006)
[19] Liu, Z.; Gu, P.-H., Nucl. Phys. B, 915, 206, (2017)
[20] Cheung, K.; Okada, H.; Orikasa, Y., (2017)
[21] Arcadi, G.; Lindner, M.; Queiroz, F. S.; Rodejohann, W.; Vogl, S., J. Cosmol. Astropart. Phys., 1803, Article 042 pp., (2018)
[22] Bertuzzo, E.; Jana, S.; Machado, P. A.N.; Zukanovich Funchal, R., (2018)
[23] Lopez Honorez, L.; Nezri, E.; Oliver, J. F.; Tytgat, M. H.G., J. Cosmol. Astropart. Phys., 0702, Article 028 pp., (2007)
[24] Gustafsson, M.; Lundstrom, E.; Bergstrom, L.; Edsjo, J., Phys. Rev. Lett., 99, Article 041301 pp., (2007)
[25] Dolle, E. M.; Su, S., Phys. Rev. D, 80, Article 055012 pp., (2009)
[26] Chao, W.; Ramsey-Musolf, M. J., Phys. Rev. D, 89, Article 033007 pp., (2014)
[27] Goudelis, A.; Herrmann, B.; Stål, O., J. High Energy Phys., 09, Article 106 pp., (2013)
[28] Lopez Honorez, L.; Yaguna, C. E., J. High Energy Phys., 09, Article 046 pp., (2010)
[29] Lopez Honorez, L.; Yaguna, C. E., J. Cosmol. Astropart. Phys., 1101, Article 002 pp., (2011)
[30] Arhrib, A.; Tsai, Y.-L. S.; Yuan, Q.; Yuan, T.-C., J. Cosmol. Astropart. Phys., 1406, Article 030 pp., (2014)
[31] Bonilla, C.; Sokolowska, D.; Darvishi, N.; Diaz-Cruz, J. L.; Krawczyk, M., J. Phys. G, 43, Article 065001 pp., (2016)
[32] Queiroz, F. S.; Yaguna, C. E., J. Cosmol. Astropart. Phys., 1602, Article 038 pp., (2016)
[33] Arcadi, G., Eur. Phys. J. C, 78, 864, (2018)
[34] Ma, E.; Sarkar, U., Phys. Rev. Lett., 80, 5716, (1998)
[35] Ma, E., Phys. Rev. Lett., 86, 2502, (2001)
[36] Ma, E., Phys. Rev. D, 66, Article 037301 pp., (2002)
[37] Grimus, W.; Lavoura, L.; Radovcic, B., Phys. Lett. B, 674, 117, (2009)
[38] Huang, W.-C.; Tsai, Y.-L. S.; Yuan, T.-C., J. High Energy Phys., 04, Article 019 pp., (2016)
[39] Arhrib, A.; Huang, W.-C.; Ramos, R.; Tsai, Y.-L. S.; Yuan, T.-C., Phys. Rev. D, 98, Article 095006 pp., (2018)
[40] Heeck, J.; Holthausen, M.; Rodejohann, W.; Shimizu, Y., Nucl. Phys. B, 896, 281, (2015)
[41] Crivellin, A.; D’Ambrosio, G.; Heeck, J., Phys. Rev. Lett., 114, Article 151801 pp., (2015)
[42] Delle Rose, L.; Khalil, S.; Moretti, S., Phys. Rev. D, 96, Article 115024 pp., (2017)
[43] Ko, P.; Omura, Y.; Yu, C., Phys. Lett. B, 717, 202, (2012)
[44] Ko, P.; Omura, Y.; Yu, C., J. High Energy Phys., 01, Article 016 pp., (2014)
[45] Ko, P.; Omura, Y.; Yu, C., J. High Energy Phys., 11, Article 054 pp., (2014)
[46] Ko, P.; Omura, Y.; Yu, C., J. High Energy Phys., 06, Article 034 pp., (2015)
[47] Campos, M. D.; Cogollo, D.; Lindner, M.; Melo, T.; Queiroz, F. S.; Rodejohann, W., J. High Energy Phys., 08, Article 092 pp., (2017)
[48] Minkowski, P., Phys. Lett. B, 67, 421, (1977)
[49] Mohapatra, R. N.; Senjanovic, G., Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 44, 231, 912, (1979)
[50] Schechter, J.; Valle, J. W.F., Phys. Rev. D, 22, 2227, (1980)
[51] Patra, S.; Rodejohann, W.; Yaguna, C. E., J. High Energy Phys., 09, Article 076 pp., (2016)
[52] Bernal, N.; Restrepo, D.; Yaguna, C.; Zapata, Ó., (2018)
[53] Xu, X.-J., Phys. Rev. D, 95, Article 115019 pp., (2017)
[54] Chen, N.; Du, C.; Wu, Y.; Xu, X.-J., (2018)
[55] Alves, A.; Profumo, S.; Queiroz, F. S., J. High Energy Phys., 04, Article 063 pp., (2014)
[56] Arcadi, G.; Mambrini, Y.; Tytgat, M. H.G.; Zaldivar, B., J. High Energy Phys., 03, Article 134 pp., (2014)
[57] Alves, A.; Berlin, A.; Profumo, S.; Queiroz, F. S., Phys. Rev. D, 92, Article 083004 pp., (2015)
[58] Camargo, D. A.; Mambrini, Y.; Queiroz, F. S., Phys. Lett. B, 786, 337, (2018)
[59] Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F. S., Eur. Phys. J. C, 78, 203, (2018)
[60] Queiroz, F. S.; Rodejohann, W.; Yaguna, C. E., Phys. Rev. D, 95, Article 095010 pp., (2017)
[61] Catena, R.; Conrad, J.; Krauss, M. B., Phys. Rev. D, 97, Article 103002 pp., (2018)
[62] Queiroz, F. S.; Yaguna, C. E., (2018)
[63] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 176, 367, (2007)
[64] Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Comput. Phys. Commun., 180, 747, (2009)
[65] Alloul, A.; Christensen, N. D.; Degrande, C.; Duhr, C.; Fuks, B., Comput. Phys. Commun., 185, 2250, (2014)
[66] Acharya, B. S., (2017)
[67] Bertuzzo, E.; Caniu Barros, C. J.; Grilli di Cortona, G., J. High Energy Phys., 09, Article 116 pp., (2017)
[68] Tavani, M., J. High Energy Astrophys. Phenom., 19, 1, (2018)
[69] Davoudiasl, H.; Hooper, D.; McDermott, S. D., Phys. Rev. Lett., 116, Article 031303 pp., (2016)
[70] Berlin, A.; Hooper, D.; Krnjaic, G., Phys. Lett. B, 760, 106, (2016)
[71] Berlin, A.; Hooper, D.; Krnjaic, G., Phys. Rev. D, 94, Article 095019 pp., (2016)
[72] D’Eramo, F.; Profumo, S., Phys. Rev. Lett., 121, Article 071101 pp., (2018)
[73] Yepes, J., (2018)
[74] Profumo, S.; Ullio, P., J. Cosmol. Astropart. Phys., 0311, Article 006 pp., (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.