Anti-pluricanonical systems on Fano varieties. (English) Zbl 1470.14078

In birational geometry, by the philosophy of the minimal model program, there are 3 building blocks of varieties: varieties of general type (varieties with \(K\) positive), Calabi-Yau varieties (varieties with \(K\) trivial), and Fano varieties (varieties with \(K\) negative). They are characterized by numerical positivity of the canonical divisors. It is expected that such varieties satisfy certain boundedness or finiteness property. Here a set of projective varieties is bounded if its elements can be realized as fibers of an algebraic family over a base of finite type. For example, for varieties of general type, Hacon, McKernan, and Xu showed that if fix a positive integer \(d\) and a positive rational number \(v\), then the set of \(d\)-dimensional log semi-canonical varieties \(X\) with \(K_X\) ample and \(K_X^d=v\) forms a bounded family [C. D. Hacon et al., J. Eur. Math. Soc. (JEMS) 20, No. 4, 865–901 (2018; Zbl 1464.14038)]. For Fano varieties, it was conjectured that, if fix a positive integer \(d\) and a positive real number \(\epsilon\), then the set of \(d\)-dimensional \(\epsilon\)-lc Fano varieties forms a bounded family, which is known as the Borisor-Alexeev-Borisov (BAB) conjecture. The author proves the BAB conjecture in this paper together with a subsequent paper [C. Birkar, Ann. Math. (2) 193, No. 2, 347–405 (2021; Zbl 1469.14085)].
In Proposition 7.13, the author provides a criterion for a set of klt Fano varieties to be bounded. To be more precise, given a set \(\mathcal{P}\) of klt Fano varieties of dimension \(d\), if one can find a positive integer \(m\) and positive real numbers \(v, t\) such that for any \(X\in \mathcal{P}\)
\(X\) has an \(m\)-complement, that is, there exists \(\Delta\in |-mK_X|\) such that \((X, \frac{1}{m}\Delta)\) is lc;
\(|-mK_X|\) defines a birational map;
\((-K_X)^d\leq v\);
\((X, B)\) is lc for any effective \(\mathbb{R}\)-divisor \(B\sim_\mathbb{R}-t K_X \),
then \(\mathcal{P}\) is bounded.
So the author proved the BAB conjecture by showing the existence of such \(m,v,t\) for \(\mathcal{P}\) the set of \(d\)-dimensional \(\epsilon\)-lc Fano varieties.
Section 4 is devoted to the existence of a uniform \(m\) such that \(|-mK_X|\) defines a birational map for any \(\epsilon\)-lc Fano varieties \(X\) of dimension \(d\). The method is to construct isolated non-klt centers and to apply Nadel vanishing to get point separation. Such kind of ideas were used by U. Angehrn and Y.-T. Siu [Invent. Math. 122, No. 2, 291–308 (1995; Zbl 0847.32035)], C. D. Hacon et al. [Ann. Math. (2) 177, No. 3, 1077–1111 (2013; Zbl 1281.14036); Ann. Math. (2) 180, No. 2, 523–571 (2014; Zbl 1320.14023)]. One of the main difficulty here is that to use the \(\epsilon\)-lc condition one need to develop a more presice adjunction theory for non-klt centers (this part is explained in Section 3).
Sections 6–8 are devoted to the existence of a uniform \(m\) such that \(X\) has an \(m\)-complement for any klt Fano varieties \(X\) of dimension \(d\). This result is the most important and technical part of this paper, which is originally conjectured by Shokurov. Note that here \(X\) is only assumed to be klt instead of \(\epsilon\)-lc. As a consequence, it implies that for any klt Fano varieties \(X\) of dimension \(d\), there exists a uniform \(m\) depending on \(d\) such that \(|-mK_X|\neq \emptyset\). For the proof the author introduces the concept of generalized pairs and extend the conjecture in the setting of generalized pairs. Then the author proves the conjecture by induction on dimensions.
Section 9 is devoted to the existence of a uniform \(v\) such that \((-K_X)^d\leq v\) for any \(\epsilon\)-lc Fano varieties \(X\) of dimension \(d\).


14J45 Fano varieties
14E30 Minimal model program (Mori theory, extremal rays)
14C20 Divisors, linear systems, invertible sheaves
14E05 Rational and birational maps
Full Text: DOI arXiv


[1] Ambro, Florin, The Adjunction Conjecture and its Applications, 54 pp., (1999)
[2] Ambro, Florin, The moduli {\(b\)}-divisor of an lc-trivial fibration, Compos. Math.. Compositio Mathematica, 141, 385-403, (2005) · Zbl 1094.14025 · doi:10.1112/S0010437X04001071
[3] Alexeev, Valery, Boundedness and {\(K^2\)} for log surfaces, Internat. J. Math.. International Journal of Mathematics, 5, 779-810, (1994) · Zbl 0838.14028 · doi:10.1142/S0129167X94000395
[4] Alexeev, Valery A.; Brion, Michel, Boundedness of spherical {F}ano varieties. The {F}ano {C}onference, 69-80, (2004) · Zbl 1087.14028
[5] Birkar, Caucher, Singularities of linear systems and boundedness of {F}ano varieties, (2016) · Zbl 1348.14037
[6] Birkar, Caucher, Singularities on the base of a {F}ano type fibration, J. Reine Angew. Math.. Journal f\`“{u}r die Reine und Angewandte Mathematik. [Crelle”s Journal], 715, 125-142, (2016) · Zbl 1348.14037 · doi:10.1515/crelle-2014-0033
[7] Birkar, Caucher, Existence of log canonical flips and a special {LMMP}, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 115, 325-368, (2012) · Zbl 1256.14012 · doi:10.1007/s10240-012-0039-5
[8] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 23, 405-468, (2010) · Zbl 1210.14019 · doi:10.1090/S0894-0347-09-00649-3
[9] Birkar, Caucher; Zhang, De-Qi, Effectivity of {I}itaka fibrations and pluricanonical systems of polarized pairs, Publ. Math. Inst. Hautes \'{E}tudes Sci.. Publications Math\'{e}matiques. Institut de Hautes \'{E}tudes Scientifiques, 123, 283-331, (2016) · Zbl 1348.14038 · doi:10.1007/s10240-016-0080-x
[10] Borisov, A. A., Boundedness of {F}ano threefolds with log-terminal singularities of given index, J. Math. Sci. Univ. Tokyo. The University of Tokyo. Journal of Mathematical Sciences. http://www.ms.u-tokyo.ac.jp/journal/pdf/jms080208.pdf, 8, 329-342, (2001) · Zbl 1073.14539
[11] Borisov, A. A.; Borisov, L. A., Singular toric {F}ano three-folds, Mat. Sb.. Matematicheski\u{\i} Sbornik, 183, 134-141, (1992) · Zbl 0786.14028 · doi:10.1070/SM1993v075n01ABEH003385
[12] Eisenbud, David; Harris, Joe, On varieties of minimal degree (a centennial account). Algebraic Geometry, {B}owdoin, 1985, Proc. Sympos. Pure Math., 46, 3-13, (1987) · Zbl 0646.14036 · doi:10.1090/pspum/046.1/927946
[13] Fujino, Osamu; Gongyo, Yoshinori, On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier (Grenoble). Universit\'{e} de Grenoble. Annales de l’Institut Fourier, 64, 1721-1735, (2014) · Zbl 1314.14030 · doi:10.5802/aif.2894
[14] Gongyo, Yoshinori, On the minimal model theory for dlt pairs of numerical log {K}odaira dimension zero, Math. Res. Lett.. Mathematical Research Letters, 18, 991-1000, (2011) · Zbl 1246.14026 · doi:10.4310/MRL.2011.v18.n5.a16
[15] Hacon, Christopher D.; McKernan, James, Boundedness of pluricanonical maps of varieties of general type, Invent. Math.. Inventiones Mathematicae, 166, 1-25, (2006) · Zbl 1121.14011 · doi:10.1007/s00222-006-0504-1
[16] Hacon, Christopher D.; Mckernan, James, On {S}hokurov’s rational connectedness conjecture, Duke Math. J.. Duke Mathematical Journal, 138, 119-136, (2007) · Zbl 1128.14028 · doi:10.1215/S0012-7094-07-13813-4
[17] Hacon, Christopher D.; McKernan, James; Xu, Chenyang, A{CC} for log canonical thresholds, Ann. of Math. (2). Annals of Mathematics. Second Series, 180, 523-571, (2014) · Zbl 1320.14023 · doi:10.4007/annals.2014.180.2.3
[18] Hacon, Christopher D.; McKernan, James; Xu, Chenyang, On the birational automorphisms of varieties of general type, Ann. of Math. (2). Annals of Mathematics. Second Series, 177, 1077-1111, (2013) · Zbl 1281.14036 · doi:10.4007/annals.2013.177.3.6
[19] Hacon, Christopher D.; Xu, Chenyang, Boundedness of log {C}alabi-{Y}au pairs of {F}ano type, Math. Res. Lett.. Mathematical Research Letters, 22, 1699-1716, (2015) · Zbl 1362.14018 · doi:10.4310/MRL.2015.v22.n6.a8
[20] Hartshorne, Robin, Algebraic Geometry, Grad. Texts in Math., 52, xvi+496 pp., (1977) · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[21] Iskovskikh, V. A.; Prokhorov, Yu. G., Fano varieties. Algebraic Geometry, {V}, Encycl. Math. Sci., 47, 1-247, (1999) · Zbl 0912.14013
[22] Jiang, Chen, On birational boundedness of {F}ano fibrations, Amer. J. Math.. American Journal of Mathematics, 140, 1253-1276, (2018) · Zbl 1404.14021 · doi:10.1353/ajm.2018.0030
[23] Jiang, Chen, Boundedness of anti-canonical volumes of singular log {F}ano threefolds, (2014) · Zbl 1497.14081
[24] Kawakita, Masayuki, Inversion of adjunction on log canonicity, Invent. Math.. Inventiones Mathematicae, 167, 129-133, (2007) · Zbl 1114.14009 · doi:10.1007/s00222-006-0008-z
[25] Kawamata, Yujiro, Subadjunction of log canonical divisors. {II}, Amer. J. Math.. American Journal of Mathematics, 120, 893-899, (1998) · Zbl 0919.14003 · doi:10.1353/ajm.1998.0038
[26] Kawamata, Yujiro, On the length of an extremal rational curve, Invent. Math.. Inventiones Mathematicae, 105, 609-611, (1991) · Zbl 0751.14007 · doi:10.1007/BF01232281
[27] Kawamata, Yujiro, Boundedness of {\( \bold Q}-{F\)}ano threefolds. Proceedings of the {I}nternational {C}onference on {A}lgebra, {P}art 3, Contemp. Math., 131, 439-445, (1992) · Zbl 0785.14024 · doi:10.1090/conm/131.3/1175897
[28] Kawamata, Y., Pluricanonical systems on minimal algebraic varieties, Invent. Math.. Inventiones Mathematicae, 79, 567-588, (1985) · Zbl 0593.14010 · doi:10.1007/BF01388524
[29] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji, Introduction to the minimal model problem. Algebraic Geometry, {S}endai, 1985, Adv. Stud. Pure Math., 10, 283-360, (1987) · Zbl 0672.14006
[30] Koll\'{a}r, J\'{a}nos, Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, viii+320 pp., (1996) · Zbl 0877.14012 · doi:10.1007/978-3-662-03276-3
[31] Koll\'{a}r, J\'{a}nos, Singularities of pairs. Algebraic Geometry—{S}anta {C}ruz 1995, Proc. Sympos. Pure Math., 62, 221-287, (1997) · Zbl 0905.14002
[32] Koll\'{a}r, J\'{a}nos, Effective base point freeness, Math. Ann.. Mathematische Annalen, 296, 595-605, (1993) · Zbl 0818.14002 · doi:10.1007/BF01445123
[33] (with 14 co-authors; papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991), Flips and Abundance for {A}lgebraic {T}hreefolds, Ast\'erisque, 211, (1992) · Zbl 0782.00075
[34] Koll\'{a}r, J\'{a}nos; Miyaoka, Yoichi; Mori, Shigefumi, Rational connectedness and boundedness of {F}ano manifolds, J. Differential Geom.. Journal of Differential Geometry, 36, 765-779, (1992) · Zbl 0759.14032 · doi:10.4310/jdg/1214453188
[35] Koll\'{a}r, J\'{a}nos; Miyaoka, Yoichi; Mori, Shigefumi; Takagi, Hiromichi, Boundedness of canonical {\( \bold Q}-{F\)}ano 3-folds, Proc. Japan Acad. Ser. A Math. Sci.. Japan Academy. Proceedings. Series A. Mathematical Sciences, 76, 73-77, (2000) · Zbl 0981.14016 · doi:10.3792/pjaa.76.73
[36] Koll\'{a}r, J\'{a}nos; Mori, Shigefumi, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, viii+254 pp., (1998) · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[37] Lai, Ching-Jui, Bounding volumes of singular {F}ano threefolds, Nagoya Math. J.. Nagoya Mathematical Journal, 224, 37-73, (2016) · Zbl 1390.14053 · doi:10.1017/nmj.2016.21
[38] Nakayama, Noboru, Zariski-Decomposition and Abundance, MSJ Memoirs, 14, xiv+277 pp., (2004) · Zbl 1061.14018
[39] Prokhorov, Yu. G.; Shokurov, V. V., Towards the second main theorem on complements, J. Algebraic Geom.. Journal of Algebraic Geometry, 18, 151-199, (2009) · Zbl 1159.14020 · doi:10.1090/S1056-3911-08-00498-0
[40] Prokhorov, Yu. G.; Shokurov, V. V., The first fundamental theorem on complements: from global to local, Izv. Ross. Akad. Nauk Ser. Mat.. Rossi\u{\i}skaya Akademiya Nauk. Izvestiya. Seriya Matematicheskaya, 65, 99-128, (2001) · Zbl 1068.14018 · doi:10.1070/IM2001v065n06ABEH000366
[41] Shokurov, V. V., Log Adjunction: effectiveness and positivity, (2013)
[42] Shokurov, V. V., Complements on surfaces, J. Math. Sci. (New York). Journal of Mathematical Sciences (New York), 102, 3876-3932, (2000) · Zbl 1177.14078 · doi:10.1007/BF02984106
[43] V. V. {Shokurov}, 3-fold log flips, Russian Acad. Sci. Izv. Math.. Russian Academy of Sciences. Izvestiya Mathematics, 40, 95-202, (1993) · Zbl 0785.14023 · doi:10.1070/im1993v040n01abeh001862
[44] Shokurov, V. V., Smoothness of the general anti-canonical divisor on a Fano 3-fold, Izv. Akad. Nauk SSSR Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 43, 430-441, (1979) · Zbl 0429.14012 · doi:10.1070/IM1980v014n02ABEH001123
[45] Takayama, Shigeharu, Pluricanonical systems on algebraic varieties of general type, Invent. Math.. Inventiones Mathematicae, 165, 551-587, (2006) · Zbl 1108.14031 · doi:10.1007/s00222-006-0503-2
[46] Zhang, Qi, Rational connectedness of log {\({\bf Q}}-{F\)}ano varieties, J. Reine Angew. Math.. Journal f\`“{u}r die Reine und Angewandte Mathematik. [Crelle”s Journal], 590, 131-142, (2006) · Zbl 1093.14059 · doi:10.1515/CRELLE.2006.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.