×

zbMATH — the first resource for mathematics

Hybrid metabolic network completion. (English) Zbl 07107409
Summary: Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an answer set programming (ASP)-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system clingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches.
MSC:
68N17 Logic programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ansótegui, C., Bonet, M. and Levy, J.2013. SAT-based MaxSAT algorithms. Artificial Intelligence196, 77-105. doi:10.1016/j.artint.2013.01.002 · Zbl 1270.68265
[2] Baral, C., Knowledge Representation, Reasoning and Declarative Problem Solving, (2003), Cambridge University Press · Zbl 1056.68139
[3] Becker, S., Feist, A., Mo, M., Hannum, G., Palsson, B. and Herrgard, M.2007. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA toolbox. Nature Protocols2, 3, 727-738. doi:10.1038/nprot.2007.99
[4] Caspi, R., Billington, R., Ferrer, L., Foerster, H., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver, D. S. and Karp, P. D.2016. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Research44, D1, D471-80. doi:10.1093/nar/gkv1164
[5] Collet, G., Eveillard, D., Gebser, M., Prigent, S., Schaub, T., Siegel, A. and Thiele, S.2013. Extending the metabolic network of Ectocarpus siliculosus using answer set programming. In Proc. of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning, Cabalar, P. and Son, T., Eds. Lecture Notes in Artificial Intelligence, vol. 8148. Springer-Verlag, 245-256. doi:10.1007/978-3-642-40564-8 · Zbl 1272.68012
[6] Dantzig, G., Linear Programming and Extensions, (1963), Princeton University Press · Zbl 0108.33103
[7] Ebrahim, A., Lerman, J., Palsson, B. and Hyduke, D.2013. COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Systems Biology7, 74. doi:10.1186/1752-0509-7-74
[8] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko, P.2016. Theory solving made easy with clingo 5. In Technical Communications of the Thirty-second International Conference on Logic Programming, Carro, M. and King, A., Eds., vol. 52. Open Access Series in Informatics (OASIcs), 2:1-2:15.
[9] Gebser, M., Kaminski, R., Kaufmann, B., Romero, J. and Schaub, T.2015. Progress in clasp series 3. In Proc. of the 13th International Conference on Logic Programming and Nonmonotonic Reasoning, Calimeri, F., Ianni, G. and Truszczyński, M., Eds. Lecture Notes in Artificial Intelligence, vol. 9345. Springer-Verlag, 368-383. doi:10.1007/978-3-319-23264-5 · Zbl 1320.68014
[10] Gelfond, M. and Lifschitz, V.1991. Classical negation in logic programs and disjunctive databases. New Generation Computing9, 365-385. doi:10.1007/BF03037169 · Zbl 0735.68012
[11] Handorf, T., Ebenhöh, O. and Heinrich, R.2005. Expanding metabolic networks: Scopes of compounds, robustness, and evolution. Journal of Molecular Evolution61, 4, 498-512. doi:10.1007/s00239-005-0027-1
[12] Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S. and Wanko, P.2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic Programming17, 5-6, 872-888. · Zbl 1422.68024
[13] Latendresse, M., Efficiently gap-filling reaction networks, BMC Bioinformatics, 15, 1, 225, (2014)
[14] Maranas, C. and Zomorrodi, A.2016. Optimization Methods in Metabolic Networks. John Wiley & sons.
[15] Orth, J. and Palsson, B.2010. Systematizing the generation of missing metabolic knowledge. Biotechnology and Bioengineering107, 3, 403-412. doi:10.1002/bit.22844
[16] Ostrowski, M. and Schaub, T.2012. ASP modulo CSP: The clingcon system. Theory and Practice of Logic Programming12, 4-5, 485-503. doi:10.1017/S1471068412000142 S1471068412000142 · Zbl 1260.68066
[17] Prigent, S., Collet, G., Dittami, S., Delage, L., Ethis De Corny, F., Dameron, O., Eveillard, D., Thiele, S., Cambefort, J., Boyen, C., Siegel, A. and Tonon, T.2014. The genome-scale metabolic network of ectocarpus siliculosus (ectogem): A resource to study brown algal physiology and beyond. The Plant Journal80, 2, 367-381. doi:10.1111/tpj.12627
[18] Prigent, S., Frioux, C., Dittami, S., Thiele, S., Larhlimi, A., Collet, G., Gutknecht, F., Got, J., Eveillard, D., Bourdon, J., Plewniak, F., Tonon, T. and Siegel, A.2017. Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks. PLOS Computational Biology13, 1, e1005276. doi:10.1371/journal.pcbi.1005276
[19] Reed, J., Vo, T., Schilling, C. and Palsson, B.2003. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology4, 9, R54. doi:10.1186/gb-2003-4-9-r54
[20] Satish Kumar, V., Dasika, M. and Maranas, C.2007. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics8, 1, 212. doi:10.1186/1471-2105-8-212
[21] Schaub, T. and Thiele, S.2009. Metabolic network expansion with ASP. In Proc. of the 25th International Conference on Logic Programming, Hill, P. and Warren, D., Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 312-326.
[22] Simons, P., Niemelä, I. and Soininen, T.2002. Extending and implementing the stable model semantics. Artificial Intelligence138, 1-2, 181-234. doi:10.1016/S0004-3702(02)00187-X · Zbl 0995.68021
[23] Thiele, I., Vlassis, N. and Fleming, R.2014. fastGapFill: Efficient gap filling in metabolic networks. Bioinformatics30, 17, 2529-2531. doi:10.1093/bioinformatics/btu321
[24] Vitkin, E. and Shlomi, T.2012. MIRAGE: A functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biology13, 11, R111. doi:10.1186/gb-2012-13-11-r111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.