×

zbMATH — the first resource for mathematics

Pocket guide to solve inverse problems with GlobalBioim. (English) Zbl 07107841
MSC:
65 Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adler J, Kohr H and Öktem O 2017 ODL-A Python framework for rapid prototyping in inverse problems R. Inst. Technol.
[2] Afonso M V, Bioucas-Dias J M and Figueiredo M A 2011 An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems IEEE Trans. Image Process.20 681-95 · Zbl 1372.94004
[3] Almeida M S and Figueiredo M 2013 Deconvolving images with unknown boundaries using the alternating direction method of multipliers IEEE Trans. Image Process.22 3074-86 · Zbl 1373.94019
[4] Aujol J F 2009 Some first-order algorithms for total variation based image restoration J. Math. Imaging Vis.34 307-27 · Zbl 1287.94012
[5] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imaging Sci.2 183-202 · Zbl 1175.94009
[6] Biguri A, Dosanjh M, Hancock S and Soleimani M 2016 TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction Biomed. Phys. Eng. Express2 055010
[7] Boyd S, Parikh N, Chu E, Peleato B and Eckstein J 2011 Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn.3 1-122 · Zbl 1229.90122
[8] Chambolle A and Lions P L 1997 Image recovery via total variation minimization and related problems Numer. Math.76 167-88 · Zbl 0874.68299
[9] Chambolle A, Caselles V, Cremers D, Novaga M and Pock T 2010 An introduction to total variation for image analysis Theor. Found. Numer. Methods Sparse Recovery9 227
[10] Chierchia G, Pustelnik N, Pesquet-Popescu B and Pesquet J C 2014 A nonlocal structure tensor-based approach for multicomponent image recovery problems IEEE Trans. Image Process.23 5531-44 · Zbl 1374.94069
[11] Combettes P L and Pesquet J C 2008 A proximal decomposition method for solving convex variational inverse problems Inverse Problems24 065014 · Zbl 1154.49025
[12] Condat L 2013 A primal – dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms J. Optim. Theory Appl.158 460-79 · Zbl 1272.90110
[13] Donati L, Nilchian M, Sorzano C O S and Unser M 2018 Fast multiscale reconstruction for Cryo-EM J. Struct. Biol.204 543-54
[14] Fortin M and Glowinski R 2000 Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems vol 15 (Amsterdam: Elsevier)
[15] Gazzola S, Hansen P C and Nagy J G 2019 IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems Numer. Algorithms81 773-811 · Zbl 1415.65003
[16] Hager W W 1989 Updating the inverse of a matrix SIAM Rev.31 221-39 · Zbl 0671.65018
[17] Hansen P C and Jørgensen J S 2017 AIR tools II: algebraic iterative reconstruction methods, improved implementation Numer. Algorithms79 107-37 · Zbl 1397.65007
[18] Křížek P, Lukeš T, Ovesný M, Fliegel K and Hagen G M 2016 SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy Bioinformatics32 318-20
[19] Lefkimmiatis S and Unser M 2013 Poisson image reconstruction with Hessian Schatten-norm regularization IEEE Trans. Image Process.22 4314-27 · Zbl 1373.94228
[20] Lefkimmiatis S, Ward J P and Unser M 2013 Hessian Schatten-norm regularization for linear inverse problems IEEE Trans. Image Process.22 1873-88 · Zbl 1373.94229
[21] Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, Sabinina V J, Ellenberg J, Schoen I and Ries J 2018 Real-time 3D single-molecule localization using experimental point spread functions Nat. Methods15 367
[22] Maier A et al 2013 CONRAD—a software framework for cone-beam imaging in radiology Med. Phys.40 111914
[23] McCann M T, Nilchian M, Stampanoni M and Unser M 2016 Fast 3D reconstruction method for differential phase contrast x-ray CT Opt. Express24 14564-81
[24] Merlin T, Stute S, Benoit D, Bert J, Carlier T, Comtat C, Filipovic M, Lamare F and Visvikis D 2018 CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction Phys. Med. Biol.63 185005
[25] Moreau J J 1962 Fonctions convexes duales et points proximaux dans un espace hilbertien C. R. Acad. Sci. A 255 2897-9 · Zbl 0118.10502
[26] Müller M, Mönkemöller V, Hennig S, Hübner W and Huser T 2016 Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ Nat. Commun.7 10980
[27] Ovesný M, Křížek P, Borkovec J, Švindrych Z and Hagen G M 2014 ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging Bioinformatics30 2389-90
[28] Padula A D, Scott S D and Symes W W 2009 A software framework for abstract expression of coordinate-free linear algebra and optimization algorithms ACM Trans. Math. Softw.36 8 · Zbl 1364.65130
[29] Rit S, Oliva M V, Brousmiche S, Labarbe R, Sarrut D and Sharp G C 2014 The reconstruction toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the insight toolkit (ITK) J. Phys.: Conf. Ser.489 012079
[30] Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Phys. D: Nonlinear Phenom.60 259-68 · Zbl 0780.49028
[31] Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C and Unser M 2017 DeconvolutionLab2: an open-source software for deconvolution microscopy Methods115 28-41
[32] Setzer S, Steidl G and Teuber T 2010 Deblurring poissonian images by split bregman techniques J. Vis. Commun. Image Represent.21 193-9
[33] Soubies E and Unser M 2019 Computational super-sectioning for single-slice structured-illumination microscopy IEEE Trans. Comput. Imaging5 240-50
[34] Thiébaut E 2002 Optimization issues in blind deconvolution algorithms Proc. SPIE4847 174-84
[35] Thiébaut É 2018 emmt/LazyAlgebra.jl: first release of LazyAlgebra (https://doi.org/10.5281/zenodo.1745422)
[36] Thiébaut É and Leger J and Soulez F 2018 emmt/TiPi: release 1.0.0 of TiPi (https://doi.org/10.5281/zenodo.1745424)
[37] Thielemans K, Tsoumpas C, Mustafovic S, Beisel T, Aguiar P, Dikaios N and Jacobson M W 2012 STIR: software for tomographic image reconstruction release 2 Phys. Med. Biol.57 867
[38] Unser M, Soubies E, Soulez F, McCann M and Donati L 2017 GlobalBioIm: A unifying computational framework for solving inverse problems Proc. OSA Imaging and Applied Optics Congress on Computational Optical Sensing and Imaging(San Francisco CA, USA, 2017) paper no. CTu1B (https://doi.org/10.1364/COSI.2017.CTu1B.1)
[39] Van Aarle W, Palenstijn W J, Beenhouwer J D, Altantzis T, Bals S, Batenburg K J and Sijbers J 2015 The ASTRA toolbox: a platform for advanced algorithm development in electron tomography Ultramicroscopy157 35-47
[40] Verveer P J, Gemkow M J and Jovin T M 1999 A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy J. Microsc.193 50-61
[41] Vonesch C, Wang L, Shkolnisky Y and Singer A 2011 Fast wavelet-based single-particle reconstruction in Cryo-EM IEEE Int. Symp. on Biomedical Imaging: from Nano to Macro (https://doi.org/10.1109/ISBI.2011.5872791)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.