# zbMATH — the first resource for mathematics

A new application of the Gram points. (English) Zbl 07109883
Summary: The Gram points $$t_n$$ are defined as solutions of the equation $$\theta (t)=(n-1)\pi,\ n\in \mathbb{N}$$, where $$\theta(t),\ t>0$$, denotes the increment of the argument of the function $$\pi^{-s/2}\Gamma \bigl(\frac{s}{2}\bigr)$$ along the segment connecting the points $$s=\frac{1}{2}$$ and $$s=\frac{1}{2}+it$$. In the paper, theorems on the approximation of a wide class of analytic functions by shifts $$\zeta (s+iht_k),\ h>0,\ k\in \mathbb{N}$$, of the Riemann zeta-function are obtained.

##### MSC:
 11M06 $$\zeta (s)$$ and $$L(s, \chi)$$
##### Keywords:
Gram point; Riemann zeta-function; universality theorem
Full Text:
##### References:
 [1] Bagchi, B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph.D. Thesis, Indian Statistical Institute, Calcutta (1981) [2] Billingsley, P.: Convergence of Probability Measures. Willey, New York (1968) · Zbl 0172.21201 [3] Dubickas, A.; Laurinčikas, A., Distribution modulo 1 and the discrete universality of the Riemann zeta-function, Abh. Math. Semin. Univ. Hambg., 86, 79-87, (2016) · Zbl 1409.11061 [4] Gram, J-P, Sur les zéros de la fonction $$\zeta (s)$$ de Riemann, Acta Math., 27, 289-304, (1903) · JFM 34.0461.01 [5] Hutchinson, JI, On the roots of the Riemann zeta-function Trans, Am. Math. Soc., 27, 49-60, (1925) · JFM 51.0267.01 [6] Korolev, MA, Gram’s law and Selberg’s conjecture on the distribution of the zeros of the Riemann zeta-function, Izv. Ross. Akad. Nauk. Ser. Mat., 74, 83-118, (2010) · Zbl 1257.11080 [7] Korolev, MA, On Gram’s law in the theory of the Riemann zeta-function, Izv. Ross. Akad. Nauk. Ser. Mat., 76, 67-102, (2012) [8] Korolev, MA, Gram’s law and the argument of the Riemann zeta-function, Publ. Inst. Math. (Beogr.) (N.S.), 92, 53-78, (2012) · Zbl 1274.11132 [9] Korolev, MA, On the Selberg formulas related to Gram’s law, Math. Sb., 203, 129-136, (2012) [10] Korolev, MA, On new results related to Gram’s law, Izv. Ross. Akad. Nauk. Ser. Mat., 77, 71-94, (2013) · Zbl 1303.11100 [11] Korolev, MA, On small values of the Riemann zeta-function at the Gram points, Math. Sb., 205, 67-86, (2014) [12] Korolev, MA, Gram’s law in the theory of the Riemann zeta-function. Part 1, Proc. Steklov Inst. Math., 292, 1-146, (2016) · Zbl 1403.11056 [13] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences, Pure and Applied Math. Wiley, New York (1974) · Zbl 0281.10001 [14] Laurinčikas, A.: Limit Theorems for the Riemann Zeta-Function. Kluwer Academic Publishers, Dordrecht (1996) · Zbl 0859.11053 [15] Mergelyan, SN, Uniform approximations to functions of acomplex variable, Uspekhi Mat. Nauk., 7, 31-122, (1952) [16] Montgomery, H.L.: Topics in Multiplicative Number Theory, Lecture Notes Math, vol. 227. Springer, Berlin (1971) [17] Pańkowski, Ł.: Joint universality for dependent $$L$$-functions. Ramanujan J 45(1), 181-195 (2018). https://doi.org/10.1007/s11139-017-9886-5 [18] Reich, A., Werteverteilung von Zetafunktionen, Arch. Math., 34, 440-451, (1980) · Zbl 0431.10025 [19] Selberg, A.: The zeta-function and the Riemann hypothesis. In: C.R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, pp. 187-200 (1947) [20] Siegel, CL, Contributions to the theory of the Dirichlet $$L$$-series and the Epstein zeta-functions, Ann. Math., 44, 143-172, (1943) · Zbl 0063.07004 [21] Titchmarsh, EC, The zeros of the Riemann zeta-function, Proc. R. Soc. Lond. Ser. A, 151, 234-255, (1935) · Zbl 0012.29701 [22] Titchmarsh, EC, The zeros of the Riemann zeta-function, Proc. R. Soc. Lond. Ser. A, 157, 261-263, (1936) · JFM 62.0343.03 [23] Trudgian, TS, On the success and failure of Gram’s law and the Rosser rule, Acta Arith., 143, 225-256, (2011) · Zbl 1281.11084 [24] Voronin, SM, Theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk. SSSR Ser. Mat., 39, 475-486, (1975) · Zbl 0315.10037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.