zbMATH — the first resource for mathematics

Semiclassical resolvent estimates for two and three-body Schrödinger operators. (English) Zbl 0711.35095
The purpose of this work is to establish uniform resolvent estimates for semiclassical three-body Schrödinger operators under a nontrapping condition for the classical flow of all subsystems. The author also proves resolvent estimates for two-body Schrödinger operators with positive potentials when the energy level and the Planck constant tend both to zero. This extends previous results by D. Robert and H. Tamura [Ann. Inst. Henri Poincaré, Phys. Theor. 46, 415-442 (1987; Zbl 0648.35066)] and X. P. Wang [Asymptotiques semiclassiques pour les opérateur de Schrödinger et de Dirac, Thèse d’État (1986); see also Ann. Inst. Henri Poincaré, Phys. Theor. 43, 269-319 (1985; Zbl 0614.35074)].
Reviewer: B.Helffer

35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
81U10 \(n\)-body potential quantum scattering theory
Full Text: DOI
[1] Agmon S., Lectures on exponential decay of solutions to second order elliptic equations (1982) · Zbl 0503.35001
[2] DOI: 10.1016/0022-247X(87)90077-1 · Zbl 0629.47043 · doi:10.1016/0022-247X(87)90077-1
[3] Cycon H. L., Texts and Monographs in Physics (1987)
[4] Derezinski J., A new proof of propagation Theorem for N–body quantum system. Preprint (1988)
[5] Froese R. G., Kuke Math. J. 49 pp 1075– (1982)
[6] Gérard, Ch. and Martinez, A. 1988.Principe d’absorption limite pour des opérateurs de Schrödinger à longue portée, I 121–123. Paris: C.R. Acad. Sci. t.306
[7] DOI: 10.1007/BF01212317 · Zbl 0637.35027 · doi:10.1007/BF01212317
[8] DOI: 10.1016/0022-1236(83)90034-4 · Zbl 0524.35103 · doi:10.1016/0022-1236(83)90034-4
[9] Helffer B., Bull. de la S.M.F. 53 (1986)
[10] P. Hislop, S. Nakamura: Semiclassical resolvent estimates. Preprint(1988) · Zbl 0719.35064
[11] Hörmander L., The analysis of linear partial differential operators III (1985)
[12] A. Jensen : Semiclassical resolvent estimates. Preprint1988
[13] DOI: 10.1007/BF01942331 · Zbl 0489.47010 · doi:10.1007/BF01942331
[14] DOI: 10.2307/1971301 · Zbl 0477.35069 · doi:10.2307/1971301
[15] Robert D., Autour de l’approximation semiclassique (1983)
[16] Robert D., Ann. I.H.P. 46 pp 415– (1987)
[17] Robert D., Asymptotic behavior of Schrödinger operators scatteromg amplitudes in semiclassical and low energy limits. Preprint 46 (1988)
[18] P. Hislop: Private communication
[19] Wang X. P., Asymptotiques semiclassiques pour les opérateurs de Schrödinger et de Dirac. Thèse D’Etat 46 (1986)
[20] Wang X. P., Semiclassical estimates on resolvents of Schrödinger operators with homogeneous electric field. Preprint 46 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.