×

Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée. (Meromorphic extension of the scattering matrix for long range two body problems). (French) Zbl 0711.35097

Summary: We prove the existence of a meromorphic extension of the scattering matrix for long range potentials analytic at infinity. This extension exists as a bounded operator on some Gevrey spaces on \(S^{n-1}\), with critical depending on the rate of decay of the potential at infinity. We use a semi-stationary definition of the scattering operator due to Isozaki-Kitada, using time dependent modifiers. We show that the poles of the scattering matrix coincide with the resonances of the Hamiltonian.

MSC:

35P25 Scattering theory for PDEs
81U05 \(2\)-body potential quantum scattering theory
35J10 Schrödinger operator, Schrödinger equation

References:

[1] S. Agmon , Spectral Theory Schrôdinger Operators on Euclidean and non-Euclidean Spaces , Comm. Pure Appl. Math. , vol. 39 , 1986 , p. 53 - 516 . MR 861480 | Zbl 0601.47039 · Zbl 0601.47039 · doi:10.1002/cpa.3160390703
[2] J. Aguilar et J.-M. Combes , A class of Analytic perturbations for One-Body Schrôdinger Hamiltonians , Comm. Math. Phys. , vol. 22 , 1971 , p. 269 - 279 . Article | MR 345551 | Zbl 0219.47011 · Zbl 0219.47011 · doi:10.1007/BF01877510
[3] S. Agmon et M. Klein , Exposé au colloque d’analyse microlocale d’Oberwolfach , 1987 .
[4] D. Babbit et E. Balslev , Local Distorsion Techniques and the Unitary of the S-Matrix for the Two-Body Problem , J. Math. Anal. Appl. , vol. 54 , 1976 , p. 316 - 349 . MR 413860
[5] E. Balslev , Analytic Scattering Theory for Two-Body Schrôdinger Operators , J. Funt. Anal. , vol. 29 , 1978 , p. 375 - 396 . MR 512251 | Zbl 0392.47003 · Zbl 0392.47003 · doi:10.1016/0022-1236(78)90037-X
[6] E. Balslev , Local Spectral Deformation Techniques for Schrôdinger Operators , J. Funt. Anal. , vol. 58 , 1984 , p. 79 - 105 . MR 756770 | Zbl 0556.35033 · Zbl 0556.35033 · doi:10.1016/0022-1236(84)90033-8
[7] E. Balslev , Analytic Scattering Theory of Quantum Mechanical Three-Body Systems , Ann. I.H.P. , section A, vol. 23 , 1980 , p. 125 - 160 . Numdam | MR 580324 | Zbl 0428.47003 · Zbl 0428.47003
[8] E. Balslev , Analytic Scattering Theory for Many-Body Systems Below the Smallest Three-Body Threshold , Comm. Math. Phys. , vol. 77 , 1980 , p. 173 - 210 . Article | MR 589431 | Zbl 0453.47002 · Zbl 0453.47002 · doi:10.1007/BF01982716
[9] E. Balslev et J.-M. Combes , Spectral Properties of Many-Body Schrödinger Operators with Dilation-Analytic Interactions , Comm. Math. Phys. , vol. 22 , 1971 , p. 280 - 294 . Article | MR 345552 | Zbl 0219.47005 · Zbl 0219.47005 · doi:10.1007/BF01877511
[10] T. Bang , On Quasi-analytische Funktionen , Thèse , Univ. de Copenhague , 1946 . · Zbl 0060.15103
[11] L. Cattabriga et L. Zanghirati , Fourier Integral Operators of Infinite Order on Gevrey Spaces. Applications to the Cauchy Problem for Hyperbolic Operators , in Advances in Microlocal Analysis , série C , vol. 168 , Nato ASI Series, 1985 . Zbl 0601.35065 · Zbl 0601.35065
[12] H.L. Cycon , Resonances Defined by Modified Dilations , Helv. Phys. Acta , vol. 58 , 1985 , p. 969 - 981 . MR 821113
[13] J. Derezinski , Existence and Analyticity of Many-Body Scattering Amplitudes at low Energies , J. Math. Phys. , vol. 28 , 1987 , p. 1080 - 1088 . MR 887027 | Zbl 0636.35080 · Zbl 0636.35080 · doi:10.1063/1.527550
[14] C. Gérard et A. Martinez , Semiclassical Asymptotics for the Spectral Function of Long range Schrôdinger Operators , J. Funct. Anal. , vol. 84 , n^\circ 1 , 1989 , p. 226 - 254 . (Voir aussi exposé des Actes du colloque E.D.P. de Saint-Jean-de-Monts, 1987 ). MR 999499 | Zbl 0692.35069 · Zbl 0692.35069 · doi:10.1016/0022-1236(89)90121-3
[15] G. Hagedorn , A Link Between Scattering Resonances and Dilation Analytic Resonances in Few-Body Quantum Mechanics , Comm. Math. Phys. , vol. 65 , 1979 , p. 181 - 188 . Article | MR 528190 | Zbl 0404.47007 · Zbl 0404.47007 · doi:10.1007/BF01225148
[16] B. Helffer et A. Martinez , Comparaison entre les diverses notions de résonances , Helv. Phys. Acta , vol. 60 , 1987 , p. 992 - 1003 . MR 929933
[17] B. Helffer et J. Sjöstrand , Resonances en limite semiclassique , Bull. S.M.F. , mémoires n^\circ 24/25, 114 , 1986 . · Zbl 0631.35075
[18] L. Hormander , An Introduction to Complex Analysis in Several Variables , North-Holland , 1973 . MR 344507
[19] W. Hunziker , Distorsion Analycicity and Molecular Resonances Curves , Ann. I.H.P. , Section A , 1986 . Numdam · Zbl 0619.46068
[20] H. Isozaki , Differentiability of Generalized Fourier Transform Associated with Schrôdinger Operators , J. Math. Kyoto Univ. , vol. 25 , 1985 , p. 789 - 806 . Article | MR 810981 | Zbl 0612.35004 · Zbl 0612.35004
[21] H. Isozaki et H. Kitada , Modified wave operators with time independent modifiers , J. Fac. Sci. Tokyo Univ. , Sect. 1A, 32 , 1985 , p. 77 - 104 . MR 783182 | Zbl 0582.35036 · Zbl 0582.35036
[22] H. Isozaki et H. Kitada , Scattering Matrices for Two-Body Schrôdinger Operators . Scientific Papers of the College of Arts and Sciences , Tokyo Univ ., vol. 35 , 1985 , p. 81 - 107 . MR 847881 | Zbl 0615.35065 · Zbl 0615.35065
[23] A. Jensen , Local Distorsion Techniques, Resonances and Poles of the S-Matrix , J. Math. Anal. Appl. , vol. 59 , 1977 , p. 505 - 513 . MR 441153 | Zbl 0361.47018 · Zbl 0361.47018 · doi:10.1016/0022-247X(77)90077-4
[24] S.T. Kuroda , An Introduction to Scattering Theory , Aarhus Univ . Lecture Notes , n^\circ 51, 1978 . MR 528757 | Zbl 0407.47003 · Zbl 0407.47003
[25] L. Landau et E. Lifchitz , Mécanique quantique, théorie non relativiste , Mir éd ., 1967 . · Zbl 0144.47605
[26] P. Laubin , Analyse microlocale des singularités analytiques , Bull. Soc. Roy. Sci. Liège , vol. 52 , 1983 , p. 103 - 212 . MR 720427 | Zbl 0567.58028 · Zbl 0567.58028
[27] P.D. Lax et R.S. Phillips , Scattering Theory , Academic Press , 1967 . MR 217440 | Zbl 0186.16301 · Zbl 0186.16301
[28] M. Reed et B. Simon , Methods of Modern Mathematical Physics , vol. III et IV , Academic Press , 1978 . · Zbl 0401.47001
[29] C. Roumieu , Sur quelques extensions de distributions , Ann. Sci. Ec. Norm. Sup. , 3 e série, t. 77 , 1960 , p. 41 - 121 . Numdam | MR 121643 | Zbl 0104.33403 · Zbl 0104.33403
[30] N. Shenk et D. Thoe , Resonant states and poles of the scattering matrix for perturbations of -\Delta , J. Math. Anal. Appl. , vol. 54 , 1976 , p. 316 - 349 . MR 308616 · Zbl 0229.35072
[31] I.M. Sigal , Scattering Theory for Many-Body Systems-Rigorous Results , Lect. Notes in Math. , n^\circ 1011 , Springer , 1983 . MR 715786 · Zbl 0522.47006
[32] I.M. Sigal , Analytic Properties of the Scattering Matrix of Many Particle Systems , Integral Equations and Operator Theory , vol. 9 , 1986 , p. 134 - 153 . MR 824624 | Zbl 0605.47009 · Zbl 0605.47009 · doi:10.1007/BF01257066
[33] B. Simon , The Definition of Molecular Resonances Curves by the Method of Exterior Complex Scaling , Phys. Lett. , vol. 71A , 1979 , p. 211 - 214 .
[34] Sim2] B. Simon , Resonances in N-Body Quantum Systems with Dilation-Analytic Potentials and the Foundation of Time-Dependent Perturbation Theory , Ann. Math. , vol. 97 , 1973 , p. 247 - 272 . MR 353896 | Zbl 0252.47009 · Zbl 0252.47009 · doi:10.2307/1970847
[35] J. Sjöstrand , Singularités analytiques microlocales , Astérisque , vol. 95 , 1982 . MR 699623 | Zbl 0524.35007 · Zbl 0524.35007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.