Convergence and rigidity of manifolds under Ricci curvature bounds. (English) Zbl 0711.53038

Convergence and rigidity results for manifolds with bounded Ricci curvature and either bounded injectivity radius or volume are proved. It is shown that the space of compact Riemannian n-dimensional manifolds with bounded Ricci curvature, bounded diameter and a lower bound for the injectivity radius is compact in the \(C^{1,\alpha}\)-topology. This generalizes the Cheeger-Gromov compactness theorem. As an application a sphere theorem for manifolds with positive Ricci curvature and volume nearby the volume of the standard sphere is proved. This generalizes previous results since no bound on the sectional curvature is used. Using the compactness result it is also shown that a compact 4-dimensional almost Einstein manifold with positive Ricci curvature is close to an Einstein orbifold in the Gromov-Hausdorff topology.
The following observation is used in the proofs: The bounds for the Ricci curvature and the injectivity radius imply a lower bound on the size of balls with harmonic coordinates with \(C^{1,\alpha}\)-bounds on the metric.
Reviewer: H.-B.Rademacher


53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C20 Global Riemannian geometry, including pinching
Full Text: DOI EuDML


[1] Allard, W.: On the first variation of a varifold. Ann. Math.95, 417-491 (1972) · Zbl 0252.49028
[2] Anderson, M.: Short geodesics and gravitational instantons. J. Differ. Geom.31, 265-275 (1990) · Zbl 0696.53029
[3] Anderson, M.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc.2, 455-490 (1989) · Zbl 0694.53045
[4] Anderson, M.: TheL 2 structure of moduli spaces of Einstein metrics on 4-manifolds (preprint)
[5] Besse, A.: Einstein Manifolds, Ergebnisse der Mathematik, Band 10, Berlin Heidelberg New York: Springer 1987 · Zbl 0613.53001
[6] Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math.92, 61-74 (1970) · Zbl 0194.52902
[7] Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of non-negative Ricci curvature. J. Differ. Geom.6, 119-128 (1971) · Zbl 0223.53033
[8] Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ec. Norm. Super.13, 419-435 (1980) · Zbl 0465.53032
[9] Deturck, D., Kazdan, J.: Some regularity theorems in Riemannian geometry. Ann. Sci. Ec. Norm. Super.14, 249-260 (1980) · Zbl 0486.53014
[10] Gao, L.: Einstein metrics (preprint)
[11] Gao, L.: Convergence of Riemannian manifolds, Ricci pinching andL n/2-curvature pinching (preprint)
[12] Greene, R., Wu, H.: Lipsehitz convergence of Riemannian manifolds. Pac. J. Math.131, 119-141 (1988) · Zbl 0646.53038
[13] Gromov, M.: Structures metriques pour les vari?t?s Riemanniennes. Cedic/Fernand Nathan, Paris, 1981
[14] Grove, K., Petersen, P.: On the exeess of metric spaces and manifolds (preprint)
[15] Grove, K., Petersen, P., Wu, J-Y.: Geometric finiteness theorems via controlled topology. Invent. Math.99, 205-213 (1990) · Zbl 0747.53033
[16] Itokawa, Y.: The topology of certain Riemannian manifolds with positive Ricci curvature. J. Differ. Geom.18, 151-156 (1983) · Zbl 0512.53043
[17] Jost, J., Karcher, H.: Geometrische Methoden zur Gewinnung von apriori Schranken f?r harmonische Abbildungen. Manuscr. Math.40, 27-71 (1982) · Zbl 0502.53036
[18] Kasue, A.: A convergence theorem for Riemannian manifolds and some applications. Nagoya Math. J.114, 21-51 (1989) · Zbl 0682.53042
[19] Morrey, C.: Multiple Integrals in the Calculus of Variations. Grundlehren Series, Band 120, Berlin Heidelberg New York: Springer 1966 · Zbl 0142.38701
[20] Peters, S.: Convergence of Riemannian manifolds. Compos. Math.62, 3-16 (1987) · Zbl 0618.53036
[21] Shiohama, K.: A sphere theorem for manifolds of positive Ricci curvature. Trans. Am. Math. Soc.275, 811-819 (1983) · Zbl 0518.53047
[22] Tian, G., Yau, S.T.: K?hler-Einstein metrics on complex surfaces withC 1>0. Commun. Math. Phys.42, 175-203 (1987) · Zbl 0631.53052
[23] Yamaguchi, T.: Homotopy type finiteness theorems for certain precompact families of Riemannian manifolds. Proc. Am. Math. Soc.102, 660-666 (1989) · Zbl 0647.53035
[24] Yamaguchi, T.: Lipschitz convergence of manifolds of positive Ricci curvature and large volume. Math. Ann.284, 423-436 (1990) · Zbl 0653.53025
[25] Bando, S., Kobayashi, R.: Ricci-flat K?hler metrics on affine algebraic manifolds. Math. Ann.287, 175-180 (1990) · Zbl 0701.53083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.