×

Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory. (English) Zbl 1431.62422

In a continuous time framework, stochastic differential equations (SDEs) driven by Gaussian processes with stationary increments have been introduced to model random evolution phenomena with long random dependence properties. In the main result of this paper, the existence and uniqueness of the invariant distribution is shown, and some upper bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise and fractional Brownian motion \( H \in (0,1/2) \) is outlined.
This paper is well-organized with remarkable results.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G22 Fractional processes, including fractional Brownian motion
60G15 Gaussian processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv.2 107-144. Update of, and a supplement to, the 1986 original. · Zbl 1189.60077
[2] Brockwell, P.J. and Davis, R.A. (2013). Time Series: Theory and Methods. Springer Science & Business Media. · Zbl 1169.62074
[3] Brouste, A., Cai, C. and Kleptsyna, M. (2014). Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise. Math. Methods Statist.23 103-115. · Zbl 1308.62140 · doi:10.3103/S1066530714020021
[4] Brouste, A. and Kleptsyna, M. (2012). Kalman type filter under stationary noises. Systems Control Lett.61 1229-1234. · Zbl 1255.93143 · doi:10.1016/j.sysconle.2012.09.007
[5] Cohen, S. and Panloup, F. (2011). Approximation of stationary solutions of Gaussian driven stochastic differential equations. Stochastic Process. Appl.121 2776-2801. · Zbl 1228.60076 · doi:10.1016/j.spa.2011.08.001
[6] Cohen, S., Panloup, F. and Tindel, S. (2014). Approximation of stationary solutions to SDEs driven by multiplicative fractional noise. Stochastic Process. Appl.124 1197-1225. · Zbl 1285.60068 · doi:10.1016/j.spa.2013.11.004
[7] Deya, A., Panloup, F. and Tindel, S. (2016). Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise. arXiv preprint, arXiv:1605.00880. · Zbl 1440.60028
[8] Down, D., Meyn, S.P. and Tweedie, R.L. (1995). Exponential and uniform ergodicity of Markov processes. Ann. Probab.23 1671-1691. · Zbl 0852.60075 · doi:10.1214/aop/1176987798
[9] Fontbona, J. and Panloup, F. (2017). Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise. Ann. Inst. Henri Poincaré Probab. Stat.53 503-538. · Zbl 1367.60067 · doi:10.1214/15-AIHP724
[10] Ford, N.J., Savostyanov, D.V. and Zamarashkin, N.L. (2014). On the decay of the elements of inverse triangular Toeplitz matrices. SIAM J. Matrix Anal. Appl.35 1288-1302. · Zbl 1317.15027 · doi:10.1137/130931734
[11] Guasoni, P. (2006). No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance16 569-582. · Zbl 1133.91421 · doi:10.1111/j.1467-9965.2006.00283.x
[12] Hairer, M. (2005). Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab.33 703-758. · Zbl 1071.60045 · doi:10.1214/009117904000000892
[13] Hairer, M. (2008). Ergodic properties of a class of non-Markovian processes. Lecture Notes. · Zbl 1186.60052
[14] Hairer, M. and Ohashi, A. (2007). Ergodic theory for SDEs with extrinsic memory. Ann. Probab.35 1950-1977. · Zbl 1129.60052 · doi:10.1214/009117906000001141
[15] Hairer, M. and Pillai, N.S. (2013). Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann. Probab.41 2544-2598. · Zbl 1288.60068 · doi:10.1214/12-AOP777
[16] Jeon, J.-H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L. and Metzler, R. (2011). In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett.106 048103.
[17] Kolmogorov, A.N. and Rozanov, Ju.A. (1960). On a strong mixing condition for stationary Gaussian processes. Theory Probab. Appl.5 204-208. · Zbl 0106.12005 · doi:10.1137/1105018
[18] Kou, S.C. (2008). Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. Ann. Appl. Stat.2 501-535. · Zbl 1400.62272 · doi:10.1214/07-AOAS149
[19] Odde, D.J., Tanaka, E.M., Hawkins, S.S. and Buettner, H.M. (1996). Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol. Bioeng.50 452-461.
[20] Ostry, D.I. (2006). Synthesis of accurate fractional Gaussian noise by filtering. IEEE Trans. Inform. Theory52 1609-1623. · Zbl 1318.94020 · doi:10.1109/TIT.2006.871036
[21] Panloup, F. and Richard, A. (2018). Sub-exponential convergence to equilibrium for gaussian driven stochastic differential equations with semi-contractive drift. arXiv preprint, arXiv:1804.01348. · Zbl 1462.60046
[22] Rosenblatt, M. (1972). Central limit theorem for stationary processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory 551-561. Berkeley: Univ. California Press. · Zbl 0255.60026
[23] Varvenne, M. (2019). Supplement to “Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory.” DOI:10.3150/18-BEJ1089SUPP. · Zbl 1431.62422
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.