×

Networks of reinforced stochastic processes: asymptotics for the empirical means. (English) Zbl 1430.60078

Consider a network of \(N\) interacting stochastic processes, positioned at the vertices of an underlying graph governing which processes interact directly. The processes at each vertex take values in \(\{0,1\}\), updating at each time \(n\) according to conditionally independent Bernoulli random variables with parameters which are linear combinations of “inclination” random variables \(Z_{n,j}\) at time \(n\) for those vertices \(j\) with which a given vertex interacts directly. The authors prove limiting results for the empirical means of these stochastic processes, that is, asymptotics for the proportion of time each process spends in the state \(\{1\}\). Their first result shows that these empirical means all converge almost surely to the same random variable, \(Z_\infty\). To complement this result, the authors also prove joint central limit theorems for these empirical means and the “inclination” variables. The covariance structures of the limiting Gaussian random variables obtained in these results depends on the asymptotic behaviour of a sequence governing the update of the “inclination” random variables at each time step, the underlying graph, and the random variable \(Z_\infty\). The authors also discuss some statistical applications of their results, such as the construction of asymptotic confidence intervals for statistics of interest and inference on the underlying graph structure.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F05 Central limit and other weak theorems
60F15 Strong limit theorems
62E20 Asymptotic distribution theory in statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. Modern Phys.74 47-97. · Zbl 1205.82086
[2] Aletti, G., Crimaldi, I. and Ghiglietti, A. (2019). Supplement to “Networks of reinforced stochastic processes: asymptotics for the empirical means.” DOI:10.3150/18-BEJ1092SUPP. · Zbl 1430.60078
[3] Aletti, G., Crimaldi, I. and Ghiglietti, A. (2017). Synchronization of reinforced stochastic processes with a network-based interaction. Ann. Appl. Probab.27 3787-3844. · Zbl 1382.60046 · doi:10.1214/17-AAP1296
[4] Aletti, G. and Ghiglietti, A. (2017). Interacting generalized Friedman’s urn systems. Stochastic Process. Appl.127 2650-2678. · Zbl 1367.60119 · doi:10.1016/j.spa.2016.12.003
[5] Aletti, G., Ghiglietti, A. and Vidyashankar, A.N. (2018). Dynamics of an adaptive randomly reinforced urn. Bernoulli24 2204-2255. · Zbl 1417.60011 · doi:10.3150/17-BEJ926
[6] Aletti, G., May, C. and Secchi, P. (2009). A central limit theorem, and related results, for a two-color randomly reinforced urn. Adv. in Appl. Probab.41 829-844. · Zbl 1176.60013 · doi:10.1239/aap/1253281065
[7] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou, C. (2008). Synchronization in complex networks. Phys. Rep.469 93-153.
[8] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science286 509-512. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[9] Benaïm, M., Benjamini, I., Chen, J. and Lima, Y. (2015). A generalized Pólya’s urn with graph based interactions. Random Structures Algorithms46 614-634. · Zbl 1317.05103 · doi:10.1002/rsa.20523
[10] Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2011). A central limit theorem and its applications to multicolor randomly reinforced urns. J. Appl. Probab.48 527-546. · Zbl 1225.60038 · doi:10.1239/jap/1308662642
[11] Berti, P., Crimaldi, I., Pratelli, L. and Rigo, P. (2016). Asymptotics for randomly reinforced urns with random barriers. J. Appl. Probab.53 1206-1220. · Zbl 1358.60005 · doi:10.1017/jpr.2016.75
[12] Chen, J. and Lucas, C. (2014). A generalized Pólya’s urn with graph based interactions: Convergence at linearity. Electron. Commun. Probab.19 no. 67, 13. · Zbl 1326.60135
[13] Chen, M.-R. and Kuba, M. (2013). On generalized Pólya urn models. J. Appl. Probab.50 1169-1186. · Zbl 1290.60009 · doi:10.1239/jap/1389370106
[14] Cirillo, P., Gallegati, M. and Hüsler, J. (2012). A Pólya lattice model to study leverage dynamics and contagious financial fragility. Adv. Complex Syst.15 1250069, 26.
[15] Collevecchio, A., Cotar, C. and LiCalzi, M. (2013). On a preferential attachment and generalized Pólya’s urn model. Ann. Appl. Probab.23 1219-1253. · Zbl 1266.05150 · doi:10.1214/12-AAP869
[16] Crimaldi, I. (2009). An almost sure conditional convergence result and an application to a generalized Pólya urn. Int. Math. Forum4 1139-1156. · Zbl 1196.60046
[17] Crimaldi, I. (2016). Central limit theorems for a hypergeometric randomly reinforced urn. J. Appl. Probab.53 899-913. · Zbl 1351.60024 · doi:10.1017/jpr.2016.48
[18] Crimaldi, I. (2016). Introduzione Alla Nozione di Convergenza Stabile e sue Varianti (Introduction to the Notion of Stable Convergence and Its Variants) 57. Bologna, Italy: Unione Matematica Italiana, Monograf s.r.l. Book written in Italian.
[19] Crimaldi, I., Dai Pra, P. and Minelli, I.G. (2016). Fluctuation theorems for synchronization of interacting Pólya’s urns. Stochastic Process. Appl.126 930-947. · Zbl 1333.60201 · doi:10.1016/j.spa.2015.10.005
[20] Crimaldi, I., Dai Pra, P., Louis, P.Y. and Minelli, I.G. (2019). Synchronization and functional central limit theorems for interacting reinforced random walks. Stochastic Process. Appl.129 70-101. · Zbl 1404.60044 · doi:10.1016/j.spa.2018.02.012
[21] Crimaldi, I., Letta, G. and Pratelli, L. (2007). A strong form of stable convergence. In Séminaire de Probabilités XL. Lecture Notes in Math.1899 203-225. Berlin: Springer. · Zbl 1129.60030
[22] Crimaldi, I. and Pratelli, L. (2005). Convergence results for multivariate martingales. Stochastic Process. Appl.115 571-577. · Zbl 1070.60040 · doi:10.1016/j.spa.2004.10.004
[23] Dai Pra, P., Louis, P.-Y. and Minelli, I.G. (2014). Synchronization via interacting reinforcement. J. Appl. Probab.51 556-568. · Zbl 1305.60105 · doi:10.1239/jap/1402578643
[24] Fortini, S., Petrone, S. and Sporysheva, P. (2018). On a notion of partially conditionally identically distributed sequences. Stochastic Process. Appl.128 819-846. · Zbl 1390.60124 · doi:10.1016/j.spa.2017.06.008
[25] Ghiglietti, A. and Paganoni, A.M. (2014). Statistical properties of two-color randomly reinforced urn design targeting fixed allocations. Electron. J. Stat.8 708-737. · Zbl 1348.62254 · doi:10.1214/14-EJS899
[26] Ghiglietti, A., Vidyashankar, A.N. and Rosenberger, W.F. (2017). Central limit theorem for an adaptive randomly reinforced urn model. Ann. Appl. Probab.27 2956-3003. · Zbl 1379.60025 · doi:10.1214/16-AAP1274
[27] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application: Probability and Mathematical Statistics. New York-London: Academic Press. · Zbl 0462.60045
[28] Konda, V.R. and Tsitsiklis, J.N. (2004). Convergence rate of linear two-time-scale stochastic approximation. Ann. Appl. Probab.14 796-819. · Zbl 1094.62103 · doi:10.1214/105051604000000116
[29] Laruelle, S. and Pagès, G. (2013). Randomized urn models revisited using stochastic approximation. Ann. Appl. Probab.23 1409-1436. · Zbl 1429.62360 · doi:10.1214/12-AAP875
[30] Lima, Y. (2016). Graph-based Pólya’s urn: Completion of the linear case. Stoch. Dyn.16 1660007, 13. · Zbl 1335.60185
[31] Mokkadem, A. and Pelletier, M. (2006). Convergence rate and averaging of nonlinear two-time-scale stochastic approximation algorithms. Ann. Appl. Probab.16 1671-1702. · Zbl 1104.62095 · doi:10.1214/105051606000000448
[32] Newman, M.E.J. (2010). Networks: An Introduction. Oxford: Oxford Univ. Press. · Zbl 1195.94003
[33] Paganoni, A.M. and Secchi, P. (2004). Interacting reinforced-urn systems. Adv. in Appl. Probab.36 791-804. · Zbl 1062.60031 · doi:10.1239/aap/1093962234
[34] Pelletier, M. (1998). Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing. Ann. Appl. Probab.8 10-44. · Zbl 0965.62065 · doi:10.1214/aoap/1027961032
[35] Pemantle, R. (2007). A survey of random processes with reinforcement. Probab. Surv.4 1-79. · Zbl 1189.60138 · doi:10.1214/07-PS094
[36] van der Hofstad, R. (2016). Random Graphs and Complex Networks. https://www.win.tue.nl/ rhofstad/NotesRGCN.html. · Zbl 1361.05002
[37] Zhang, L.-X. (2014). A Gaussian process approximation for two-color randomly reinforced urns. Electron. J. Probab.19 no. 86, 19. · Zbl 1317.60040 · doi:10.1214/EJP.v19-3432
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.