×

Fano threefolds with infinite automorphism groups. (English. Russian original) Zbl 1444.14074

Izv. Math. 83, No. 4, 860-907 (2019); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 83, No. 4, 226-280 (2019).
Smooth Fano threefolds of Picard rank one with infinite automorphism groups have been classified in [A. G. Kuznetsov et al., Jpn. J. Math. (3) 13, No. 1, 109–185 (2018; Zbl 1406.14031)]. In the paper under review, the authors give a classification for smooth Fano threefolds of Picard rank larger than one with infinite automorphism groups.

MSC:

14J30 \(3\)-folds
14J45 Fano varieties
14J50 Automorphisms of surfaces and higher-dimensional varieties

Citations:

Zbl 1406.14031
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] V. A. Iskovskih 1977 Fano 3-folds. I Izv. Akad. Nauk SSSR Ser. Mat.41 3 516-562 · Zbl 0363.14010
[2] English transl. V. A. Iskovskih 1977 Math. USSR-Izv.11 3 485-527 · Zbl 0382.14013
[3] V. A. Iskovskih 1978 Fano 3-folds. II Izv. Akad. Nauk SSSR Ser. Mat.42 3 506-549 · Zbl 0407.14016
[4] English transl. V. A. Iskovskih 1978 Math. USSR-Izv.12 3 469-506 · Zbl 0424.14012
[5] S. Mori and S. Mukai 1981/82 Classification of Fano 3-folds with B2 ≥ 2 Manuscripta Math.36 2 147-162 · Zbl 0478.14033
[6] S. Mori and S. Mukai 2003 Erratum Manuscripta Math.110 3 407
[7] S. Mori and S. Mukai 2004 Extremal rays and Fano 3-folds The Fano conference Univ. Torino, Turin 37-50 · Zbl 1070.14018
[8] I. V. Dolgachev and V. A. Iskovskikh 2009 Finite subgroups of the plane Cremona group Algebra, arithmetic, and geometry, In honor of Yu. I. Manin Progr. Math. 269, I Birkhäuser Boston, Inc., Boston, MA 443-548 · Zbl 1219.14015
[9] S. Mukai 1988 Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 Algebraic geometry and commutative algebra, In honor of M. Nagata 1 Kinokuniya, Tokyo 357-377 · Zbl 0701.14044
[10] S. Mukai and H. Umemura 1983 Minimal rational threefolds Algebraic geometryTokyo/Kyoto 1982 Lecture Notes in Math. 1016 Springer, Berlin 490-518
[11] Yu. G. Prokhorov 1990 Automorphism groups of Fano manifolds Uspekhi Mat. Nauk45 3(273) 195-196 · Zbl 0707.14037
[12] English transl. Yu. G. Prokhorov 1990 Russian Math. Surveys45 3 222-223 · Zbl 0707.14037
[13] A. G. Kuznetsov, Yu. G. Prokhorov and C. A. Shramov 2018 Hilbert schemes of lines and conics and automorphism groups of Fano threefolds Japan. J. Math.13 1 109-185 · Zbl 1406.14031
[14] V. V. Batyrev 1981 Toroidal Fano 3-folds Izv. Akad. Nauk SSSR Ser. Mat.45 4 704-717 · Zbl 0478.14032
[15] English transl. V. V. Batyrev 1982 Math. USSR-Izv.19 1 13-25 · Zbl 0495.14027
[16] K. Watanabe and M. Watanabe 1982 The classification of Fano 3-folds with torus embeddings Tokyo J. Math.5 1 37-48 · Zbl 0581.14028
[17] H. Süss 2014 Fano threefolds with 2-torus action. A picture book Doc. Math.19 905-940 · Zbl 1341.14021
[18] Zhizhong Huang and P. Montero 2018 Fano threefolds as equivariant compactifications of the vector group 1802.08090
[19] B. Hassett and Yu. Tschinkel 1999 Geometry of equivariant compactifications of 𝔾na Internat. Math. Res. Notices1999 22 1211-1230 · Zbl 0966.14033
[20] H. Umemura 1988 Minimal rational threefolds. II Nagoya Math. J.110 15-80 · Zbl 0611.14035
[21] T. Nakano 1989 On equivariant completions of 3-dimensional homogeneous spaces of SL(2,C) Japan. J. Math. (N.S.)15 2 221-273 · Zbl 0721.14008
[22] T. Nakano 1998 Projective threefolds on which SL(2) acts with 2-dimensional general orbits Trans. Amer. Math. Soc.350 7 2903-2924 · Zbl 0980.14012
[23] Baohua Fu and P. Montero 2018 Equivariant compactifications of vector groups with high index 1806.02010
[24] Baohua Fu, Wenhao Ou, and Junyi Xie 2018 On Fano manifolds of Picard number one with big automorphism groups 1809.10623
[25] V. A. Iskovskikh and Yu. G. Prokhorov 1999 Fano varieties Algebraic geometry V Encyclopaedia Math. Sci. 47 Springer, Berlin 1-247 · Zbl 0912.14013
[26] S. Mori and S. Mukai 1983 On Fano 3-folds with B2 ≥ 2 Algebraic varieties and analytic varietiesTokyo 1981 Adv. Stud. Pure Math. 1 North-Holland, Amsterdam 101-129
[27] I. V. Demin 1981 Bounds on the degree of a three-dimensional Fano variety representable by a fibering on a conic Uspekhi Mat. Nauk36 3(219) 209-210 · Zbl 0504.14033
[28] English transl. I. V. Demin 1981 Russian Math. Surveys36 3 241-242 · Zbl 0513.14020
[29] I. V. Demin 1982 Addendum to the paper “Fano 3-folds representable in the form of line bundles” Izv. Akad. Nauk SSSR Ser. Mat.46 3 666-667
[30] English transl. I. V. Demin 1983 Math. USSR-Izv.20 3 625-626 · Zbl 0536.14026
[31] M. Szurek and J. A. Wiśniewski 1990 Fano bundles of rank 2 on surfaces Compositio Math.76 1-2 295-305 · Zbl 0719.14028
[32] Y. Matsushima 1957 Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlérienne Nagoya Math. J.11 145-150 · Zbl 0091.34803
[33] A. Futaki 1983 An obstruction to the existence of Einstein Kähler metrics Invent. Math.73 3 437-443 · Zbl 0506.53030
[34] Xu-Jia Wang and Xiaohua Zhu 2004 Kähler-Ricci solitons on toric manifolds with positive first Chern class Adv. Math.188 1 87-103 · Zbl 1086.53067
[35] Gang Tian 1987 On Kähler-Einstein metrics on certain Kähler manifolds with C1(M)>0 Invent. Math.89 2 225-246 · Zbl 0599.53046
[36] A. M. Nadel 1990 Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Ann. of Math. (2)132 3 549-596 · Zbl 0731.53063
[37] S. K. Donaldson 2008 Kähler geometry on toric manifolds, and some other manifolds with large symmetry Handbook of geometric analysis Adv. Lect. Math. (ALM) 7, 1 Int. Press, Somerville, MA 29-75 · Zbl 1161.53066
[38] I. A. Cheltsov and K. A. Shramov 2009 Extremal metrics on del Pezzo threefolds Multidimensional algebraic geometry, Papers dedicated to the memory of V. A. Iskovskikh Trudy Mat. Inst Steklova 264 MAIK “Nauka/Interperiodika”, Moscow 37-51 · Zbl 1312.14095
[39] English transl. I. A. Cheltsov and K. A. Shramov 2009 Proc. Steklov Inst. Math.264 30-44 · Zbl 1312.14095
[40] H. Süß 2013 Kähler-Einstein metrics on symmetric Fano T-varieties Adv. Math.246 100-113 · Zbl 1288.32035
[41] I. Cheltsov and C. Shramov 2018 Kaehler-Einstein Fano threefolds of degree 22 1803.02774
[42] Xiuxiong Chen, S. Donaldson, and Song Sun 2015 Kähler-Einstein metrics on Fano manifolds. I. Approximation of metrics with cone singularities J. Amer. Math. Soc.28 1 183-197 · Zbl 1312.53096
[43] Xiuxiong Chen, S. Donaldson, and Song Sun 2015 J. Amer. Math. Soc. Kähler-Einstein metrics on Fano manifolds. II. Limits with cone angle less than 2π 28 1 199-234 · Zbl 1312.53097
[44] Xiuxiong Chen, S. Donaldson, and Song Sun 2015 J. Amer. Math. Soc. Kähler-Einstein metrics on Fano manifolds. III. Limits as cone angle approaches 2π and completion of the main proof 28 1 235-278 · Zbl 1311.53059
[45] V. Datar and G. Székelyhidi 2016 Kähler-Einstein metrics along the smooth continuity method Geom. Funct. Anal.26 4 975-1010 · Zbl 1359.32019
[46] N. Ilten and H. Süss 2017 K-stability for Fano manifolds with torus action of complexity 1 Duke Math. J.166 1 177-204 · Zbl 1360.32020
[47] Yu. Prokhorov 2013 G-Fano threefolds. II Adv. Geom.13 3 419-434 · Zbl 1291.14025
[48] A. Kuznetsov and Yu. Prokhorov 2018 Prime Fano threefolds of genus 12 with a 𝔾m-action Épijournal Géom. Algébrique2 3
[49] Yu. Prokhorov and M. Zaidenberg 2018 Fano-Mukai fourfolds of genus 10 as compactifications of ℂ4 Eur. J. Math.4 3 1197-1263 · Zbl 1423.14244
[50] Yu. Prokhorov and C. Shramov 2017 Jordan constant for Cremona group of rank 3 Mosc. Math. J.17 3 457-509 · Zbl 1411.14018
[51] I. V. Dolgachev 2012 Classical algebraic geometry. A modern view Cambridge Univ. Press, Cambridge · Zbl 1252.14001
[52] V. G. Sarkisov 1980 Birational automorphisms of conic bundles Izv. Akad. Nauk SSSR Ser. Mat.44 4 918-945 · Zbl 0453.14017
[53] English transl. V. G. Sarkisov 1981 Math. USSR-Izv.17 1 177-202 · Zbl 0466.14012
[54] V. G. Sarkisov 1982 On conic bundle structures Izv. Akad. Nauk SSSR Ser. Mat.46 2 371-408
[55] English transl. V. G. Sarkisov 1983 Math. USSR-Izv.20 2 355-390 · Zbl 0593.14034
[56] Yu. G. Prokhorov 2018 The rationality problem for conic bundles Uspekhi Mat. Nauk73 3(441) 3-88
[57] English transl. Yu. G. Prokhorov 2018 Russian Math. Surveys73 3 375-456 · Zbl 1400.14040
[58] M. Reid 1988 Undergraduate algebraic geometry London Math. Soc. Stud. Texts 12 Cambridge Univ. Press, Cambridge
[59] Russian transl. M. Reid 1991 Undergraduate algebraic geometry Mir, Moscow
[60] I. Cheltsov and C. Shramov 2016 Cremona groups and the icosahedron Monogr. Res. Notes Math. CRC Press, Boca Raton, FL · Zbl 1328.14003
[61] G. Sanna 2014 Rational curves and instantons on the Fano threefold Y5 1411.7994
[62] M. Furushima and N. Nakayama 1989 The family of lines on the Fano threefold V5 Nagoya Math. J.116 111-122 · Zbl 0731.14025
[63] A. Iliev 1994 The Fano surface of the Gushel threefold Compositio Math.94 1 81-107 · Zbl 0822.14021
[64] W. Fulton and J. Harris 1991 Representation theory. A first course Grad. Texts in Math. 129 Springer-Verlag, New York
[65] V. V. Przhyjalkowski, I. A. Chel’tsov, and K. A. Shramov 2005 Hyperelliptic and trigonal Fano threefolds Izv. Ross. Akad. Nauk Ser. Mat.69 2 145-204 · Zbl 1081.14059
[66] English transl. V. V. Przhyjalkowski, I. A. Chel’tsov, and K. A. Shramov 2005 Izv. Math.69 2 365-421 · Zbl 1081.14059
[67] M. Reid 1997 Chapters on algebraic surfaces Complex algebraic geometryPark City, UT 1993 IAS/Park City Math. Ser. 3 Amer. Math. Soc., Providence, RI 3-159 · Zbl 0910.14016
[68] I. Cheltsov, V. Przyjalkowski, and C. Shramov 2019 Which quartic double solids are rational? J. Algebraic Geom.28 2 201-243 · Zbl 1430.14032
[69] I. Cheltsov, V. Przyjalkowski, and C. Shramov 2015 1508.07277
[70] K. Takeuchi 2009 Weak Fano threefolds with del Pezzo fibration 0910.2188
[71] P. Jahnke, T. Peternell, and I. Radloff 2011 Threefolds with big and nef anticanonical bundles. II Cent. Eur. J. Math.9 3 449-488 · Zbl 1250.14030
[72] I. A. Cheltsov and K. A. Shramov 2008 Log canonical thresholds of smooth Fano threefolds Uspekhi Mat. Nauk63 5(383) 73-180 · Zbl 1167.14024
[73] English transl. I. A. Cheltsov and K. A. Shramov 2008 Russian Math. Surveys63 5 859-958 · Zbl 1167.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.