×

zbMATH — the first resource for mathematics

A conversation with Robert E. Kass. (English) Zbl 1420.62007
MSC:
62-03 History of statistics
01A70 Biographies, obituaries, personalia, bibliographies
62C10 Bayesian problems; characterization of Bayes procedures
Biographic References:
Kass, Robert E.
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Berger, J. O. and Delampady, M. (1987). Testing precise hypotheses. Statist. Sci.3 317-352. · Zbl 0955.62545
[2] Berger, J. O. and Selke, T. (1987). Testing a point null hypothesis: irreconcilability of P values and evidence. With comments and a rejoinder by the authors. J. Amer. Statist. Assoc.82 112-139.
[3] Cramér, H. (1973). The Elements of Probability Theory and Some of Its Applications. Wiley, New York.
[4] DeGroot, M. H. (1986). A conversation with David Blackwell. Statist. Sci.1 40-53. · Zbl 0955.01510
[5] Feller, W. (1950). An Introduction to Probability Theory and Its Applications. Vol. I. Wiley, New York, NY. · Zbl 0039.13201
[6] Feller, W. (1957). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York. · Zbl 0077.12201
[7] Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. Academic Press, New York. · Zbl 0153.47602
[8] Jarosiewicz, B. Chase, S. M. Fraser, G. W. Velliste, M. Kass, R. E. and Schwartz, A. B. (2008). Functional network reorganization during learning in a brain-machine interface paradigm. Proc. Natl. Acad. Sci. USA105 19486-19491.
[9] Kass, R. E. (1989). The geometry of asymptotic inference. Statist. Sci.4 188-234. With comments and a rejoinder by the author. · Zbl 0955.62513
[10] Kass, R. E., Eden, U. T. and Brown, E. N. (2014). Analysis of Neural Data. Springer Series in Statistics. Springer, New York. · Zbl 1404.62002
[11] Kass, R. E., Kelly, R. C. and Loh, W.-L. (2011). Assessment of synchrony in multiple neural spike trains using loglinear point process models. Ann. Appl. Stat.5 1262-1292. · Zbl 1223.62159
[12] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc.90 773-795. · Zbl 0846.62028
[13] Kass, R. E. and Steffey, D. (1989). Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J. Amer. Statist. Assoc.84 717-726.
[14] Kass, R., Ventura, V. and Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. J. Neurophysiol.1 8-25.
[15] Kass, R. E. and Vos, P. W. (1997). Geometrical Foundations of Asymptotic Inference. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. · Zbl 0880.62005
[16] Kass, R. E. and Wasserman, L. A. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc.91 1343-1370. · Zbl 0884.62007
[17] Kass, R. E., Caffo, B. S., Davidian, M., Meng, X.-L., Yu, B. and Reid, N. (2016). Ten simple rules for effective statistical practice. PLoS Comput. Biol.12 e1004961.
[18] Kendall, M. and Stuart, A. (1977). The Advanced Theory of Statistics: Distribution Theory. Vol. 1, 4th ed. Macmillan Publishing, New York. · Zbl 0353.62013
[19] Mosteller, F. and Tukey, J. (1968). Data analysis, including statistics. In Handbook of Social Psychology, 2nd ed. (G. Lindzey and E. Aronson, eds.) 2. Wiley, New York.
[20] Mosteller, F. and Wallace, D. L. (1964). Inference and Disputed Authorship: The Federalist. Addison-Wesley, Reading, MA. · Zbl 0122.14106
[21] Raftery, A. (2001). Statistics in the Twenty First Century, 1st ed. CRC Press, New York.
[22] Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd ed. Wiley, New York. · Zbl 0256.62002
[23] Sellke, T., Bayarri, M. J. and Berger, J. O. (2001). Calibration of \(p\) values for testing precise null hypotheses. Amer. Statist.55 62-71. · Zbl 1182.62053
[24] Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist.22 1701-1762. · Zbl 0829.62080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.