zbMATH — the first resource for mathematics

Nonparametric multiple contrast tests for general multivariate factorial designs. (English) Zbl 1431.62332
Authors’ abstract: We develop purely nonparametric multiple inference methods for general multivariate data that neither assume any specific data distribution nor identical covariance matrices across the treatment groups. Continuous, discrete, and even ordered categorical (ordinal) data can be analyzed with these procedures in a unified way. To test hypotheses formulated in terms of purely nonparametric treatment effects, we derive pseudo-rank based multiple contrast tests and simultaneous confidence intervals. Hereby, the simultaneous confidence intervals are compatible with the multiple comparisons. The small-sample performance of the procedures is examined in a simulation study which indicates that the proposed procedures (i) control the family-wise error rate quite accurately and (ii) have a substantially higher power under non-normality than mean-based parametric competing methods. Application of the proposed tests is demonstrated by analyzing a real data set.
62K15 Factorial statistical designs
62G15 Nonparametric tolerance and confidence regions
62H15 Hypothesis testing in multivariate analysis
mvtnorm; npmv; SimComp
Full Text: DOI
[1] Akritas, M. G.; Arnold, S. F.; Brunner, E., Nonparametric hypotheses and rank statistics for unbalanced factorial designs, J. Amer. Statist. Assoc., 92, 258-265, (1997) · Zbl 0890.62038
[2] Akritas, M. G.; Brunner, E., A unified approach to rank tests for mixed models, J. Statist. Plann. Inference, 61, 249-277, (1997) · Zbl 0872.62051
[3] Bathke, A. C.; Harrar, S. W., Nonparametric methods in multivariate factorial designs for large number of factor levels, J. Statist. Plann. Inference, 138, 588-610, (2008) · Zbl 1138.62032
[4] Bathke, A. C.; Harrar, S. W.; Madden, L. V., How to compare small multivariate samples using nonparametric tests, Comput. Statist. Data Anal., 52, 4951-4965, (2008) · Zbl 1452.62382
[5] Box, G. E., Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification, Ann. Math. Stat., 290-302, (1954) · Zbl 0055.37305
[6] Bretz, F.; Genz, A.; Hothorn, A. L., On the numerical availability of multiple comparison procedures, Biom. J., 43, 645-656, (2001) · Zbl 0978.62058
[7] Brunner, E.; Dette, H.; Munk, A., Box-type approximations in nonparametric factorial designs, J. Amer. Statist. Assoc., 92, 1494-1502, (1997) · Zbl 0921.62096
[8] Brunner, E.; Domhof, S.; Langer, F., Nonparametric Analysis of Longitudinal Data in Factorial Designs, (2002), Wiley: Wiley New York · Zbl 0984.62052
[9] Brunner, E.; Konietschke, F.; Pauly, M.; Puri, M. L., Rank-based procedures in factorial designs: Hypotheses about non-parametric treatment effects, J. R. Stat. Soc. Ser. B (Statist. Methodol.), 79, 1463-1485, (2017) · Zbl 1458.62169
[10] Brunner, E.; Langer, F., Nonparametric analysis of ordered categorical data in designs with longitudinal observations and small sample sizes, Biom. J., 42, 663-675, (2000) · Zbl 0961.62036
[11] Brunner, E.; Munzel, U., The nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation, Biom. J., 42, 17-25, (2000) · Zbl 0969.62033
[12] Brunner, E.; Munzel, U.; Puri, M. L., The multivariate nonparametric Behrens-Fisher problem, J. Statist. Plann. Inference, 108, 37-53, (2002) · Zbl 1015.62061
[13] Brunner, E.; Puri, M. L., Nonparametric methods in factorial designs, Statist. Pap., 42, 1-52, (2001) · Zbl 0964.62076
[14] Dunnett, C. W., A multiple comparison procedure for comparing several treatments with a control, J. Amer. Statist. Assoc., 50, 1096-1121, (1955) · Zbl 0066.12603
[15] Efron, B.; Tibshirani, R. J., An Introduction to the Bootstrap, (1994), CRC Press: CRC Press Boca Raton, FL
[16] Ellis, A. R.; Burchett, W. W.; Harrar, S. W.; Bathke, A. C., Nonparametric inference for multivariate data: The R package, J. Statist. Softw., 76, 1-18, (2017)
[17] Gabriel, K. R., Simultaneous test procedures: Some theory of multiple comparisons, Ann. Math. Stat., 224-250, (1969) · Zbl 0198.23602
[18] Gao, X.; Alvo, M., Nonparametric multiple comparison procedures for unbalanced two-way layouts, J. Statist. Plann. Inference, 138, 3674-3686, (2008) · Zbl 1169.62068
[19] Gao, X.; Alvo, M.; Chen, J.; Li, G., Nonparametric multiple comparison procedures for unbalanced one-way factorial designs, J. Statist. Plann. Inference, 138, 2574-2591, (2008) · Zbl 1173.62036
[20] Genest, C.; Ghoudi, K.; Rivest, L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543-552, (1995) · Zbl 0831.62030
[21] Genest, C.; Nešlehová, J., A primer on copulas for count data, Astin Bull., 37, 475-515, (2007) · Zbl 1274.62398
[22] Genest, C.; Segers, J., Rank-based inference for bivariate extreme-value copulas, Ann. Statist., 37, 2990-3022, (2009) · Zbl 1173.62013
[23] A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, B. Bornkamp, M. Maechler, T. Hothorn, Multivariate normal and \(t\) distributions, http://cran.r-project.org/web/packages/mvtnorm/mvtnorm.pdf, 2014.
[24] Harrar, S. W.; Bathke, A. C., Nonparametric methods for unbalanced multivariate data and many factor levels, J. Multivariate Anal., 99, 1635-1664, (2008) · Zbl 1144.62031
[25] Hasler, M., Multiple contrast tests for multiple endpoints in the presence of heteroscedasticity, Int. J. Biostat., 10, 17-28, (2014)
[26] M. Hasler, C. Kluss, Simcomp: simultaneous comparisons for multiple endpoints, R package version 1.7 (2012).
[27] Konietschke, F.; Bösiger, S.; Brunner, E.; Hothorn, L. A., Are multiple contrast tests superior to the ANOVA?, Int. J. Biostat., 9, 63-73, (2013)
[28] Konietschke, F.; Hothorn, L. A.; Brunner, E., Rank-based multiple test procedures and simultaneous confidence intervals, Electron. J. Statist., 6, 738-759, (2012) · Zbl 1334.62083
[29] Kruskal, W. H., A nonparametric test for the several sample problem, Ann. Math. Stat., 525-540, (1952) · Zbl 0048.36703
[30] Lévy, P., Calcul des Probabilités, (1925), Gauthier-Villars: Gauthier-Villars Paris · JFM 51.0380.02
[31] Munzel, U., Linear rank score statistics when ties are present, Statist. Probab. Lett., 41, 389-395, (1999) · Zbl 0931.62041
[32] Munzel, U.; Brunner, E., Nonparametric methods in multivariate factorial designs, J. Statist. Plann. Inference, 88, 117-132, (2000) · Zbl 0968.62057
[33] Munzel, U.; Brunner, E., Nonparametric tests in the unbalanced multivariate one-way design, Biom. J., 42, 837-854, (2000) · Zbl 0961.62040
[34] Ruymgaart, F. H., A unified approach to the asymptotic distribution theory of certain midrank statistics, (Raoult, J.-P., Statistique Non Paramétrique Asymptotique, Actes Des Journées Statistiques, Rouen, France, Juin 1979, (1980), Springer: Springer Berlin), 1-18
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.