×

Posterior asymptotic normality for an individual coordinate in high-dimensional linear regression. (English) Zbl 1429.62306

Summary: It is well known that high-dimensional procedures like the Lasso provide biased estimators of parameters in a linear model. In [J. R. Stat. Soc., Ser. B, Stat. Methodol. 76, No. 1, 217–242 (2014; Zbl 1411.62196)], C.-H. Zhang and S. S. Zhang showed how to remove this bias by means of a two-step procedure. We show that de-biasing can also be achieved by a one-step estimator, the form of which inspires the development of a Bayesian analogue of the frequentists’ de-biasing techniques.

MSC:

62J05 Linear regression; mixed models
62J07 Ridge regression; shrinkage estimators (Lasso)

Citations:

Zbl 1411.62196
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aad W. Van der Vaart., Asymptotic Statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2000. · Zbl 1103.62301
[2] Ismael Castillo, Johannes Schmidt-Hieber, Aad Van der Vaart, et al. Bayesian linear regression with sparse priors., Annals of Statistics, 43(5) :1986-2018, 2015. · Zbl 1486.62197 · doi:10.1214/15-AOS1334
[3] Chao Gao, Aad W van der Vaart, and Harrison H Zhou. A general framework for Bayes structured linear models., arXiv:1506.02174, 2015. · Zbl 1471.62241
[4] Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217-242, 2014. · Zbl 1411.62196 · doi:10.1111/rssb.12026
[5] David Pollard., A User’s Guide to Measure Theoretic Probability, volume 8 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2002. · Zbl 0992.60001
[6] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector., Annals of Statistics, 37(4) :1705-1732, 2009. · Zbl 1173.62022 · doi:10.1214/08-AOS620
[7] Robert Tibshirani. Regression shrinkage and selection via the Lasso., Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996. · Zbl 0850.62538 · doi:10.1111/j.2517-6161.1996.tb02080.x
[8] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when \(p\) is much larger than \(n\)., Annals of Statistics, 35(35) :2313-2351, 2007. · Zbl 1139.62019 · doi:10.1214/009053606000001523
[9] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncertainty principle for Bernoulli and subgaussian ensembles., Constructive Approximation, 28(3):277-289, 2008. · Zbl 1230.46011 · doi:10.1007/s00365-007-9005-8
[10] Shuheng Zhou. Restricted eigenvalue conditions on subgaussian random matrices., arXiv preprint arXiv:0912.4045, 2009.
[11] R.M. Dudley. Speeds of metric probability convergence., Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 22(4):323-332, 1972. · Zbl 0223.60013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.