zbMATH — the first resource for mathematics

Bernstein-von Mises theorems for statistical inverse problems. II: Compound Poisson processes. (English) Zbl 1429.62168
Summary: We study nonparametric Bayesian statistical inference for the parameters governing a pure jump process of the form \[Y_t=\sum_{k=1}^{N(t)}Z_k,~~~t\ge 0,\] where \(N(t)\) is a standard Poisson process of intensity \(\lambda,\) and \(Z_k\) are drawn i.i.d. from jump measure \(\mu\). A high-dimensional wavelet series prior for the Lévy measure \(\nu =\lambda\mu\) is devised and the posterior distribution arises from observing discrete samples \(Y_{\Delta},Y_{2\Delta},\dots,Y_{n\Delta}\) at fixed observation distance \(\Delta,\) giving rise to a nonlinear inverse inference problem. We derive contraction rates in uniform norm for the posterior distribution around the true Lévy density that are optimal up to logarithmic factors over Hölder classes, as sample size \(n\) increases. We prove a functional Bernstein-von Mises theorem for the distribution functions of both \(\mu\) and \(\nu,\) as well as for the intensity \(\lambda,\) establishing the fact that the posterior distribution is approximated by an infinite-dimensional Gaussian measure whose covariance structure is shown to attain the information lower bound for this inverse problem. As a consequence posterior based inferences, such as nonparametric credible sets, are asymptotically valid and optimal from a frequentist point of view.
For Part I, see [the first author, “Bernstein-von Mises theorems for statistical inverse problems. I: Schrödinger equation”, J. Eur. Math. Soc. (JEMS) (to appear)].
Reviewer: Reviewer (Berlin)

62G20 Asymptotic properties of nonparametric inference
60G51 Processes with independent increments; Lévy processes
60J76 Jump processes on general state spaces
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
62G15 Nonparametric tolerance and confidence regions
Full Text: DOI Euclid arXiv
[1] Denis Belomestny, Fabienne Comte, Valentine Genon-Catalot, Hiroki Masuda, and Markus Reiß., Lévy matters IV. Lecture Notes in Mathematics. Springer, 2015.
[2] Denis Belomestny and Markus Reiß. Spectral calibration of exponential Lévy models., Finance Stoch., 10(4):449-474, 2006. · Zbl 1126.91022
[3] Boris Buchmann and Rudolf Grübel. Decompounding: an estimation problem for Poisson random sums., Ann. Statist., 31(4) :1054-1074, 2003. · Zbl 1105.62309
[4] Ismaël Castillo. On Bayesian supremum norm contraction rates., Ann. Statist., 42(5) :2058-2091, 2014. · Zbl 1305.62189
[5] Ismaël Castillo. Pólya tree posterior distributions on densities., Ann. Inst. Henri Poincaré Probab. Stat., 53(4) :2074-2102, 2017. · Zbl 1384.62156
[6] Ismaël Castillo and Richard Nickl. Nonparametric Bernstein – von Mises theorems in Gaussian white noise., Ann. Statist., 41(4) :1999-2028, 2013. · Zbl 1285.62052
[7] Ismaël Castillo and Richard Nickl. On the Bernstein – von Mises phenomenon for nonparametric Bayes procedures., Ann. Statist., 42(5) :1941-1969, 2014. · Zbl 1305.62190
[8] Ismaël Castillo and Judith Rousseau. A Bernstein – von Mises theorem for smooth functionals in semiparametric models., Ann. Statist., 43(6) :2353-2383, 2015. · Zbl 1327.62302
[9] Alberto J. Coca. Adaptive nonparametric estimation for compound Poisson processes robust to the discrete-observation scheme., arXiv:1803.09849, 2018.
[10] Alberto J. Coca. Efficient nonparametric inference for discretely observed compound Poisson processes., Probab. Theory Related Fields, 170(1-2):475-523, 2018. · Zbl 1383.62081
[11] Masoumeh Dashti and Andrew Stuart. The Bayesian approach to inverse problems. In:, Handbook of Uncertainty Quantification, Eds. Ghanem et al., Springer, 2016.
[12] Richard M. Dudley., Real analysis and probability. Cambridge Univ. Press, 2002. · Zbl 0686.60001
[13] Richard M. Dudley., Uniform central limit theorems. Cambridge Univ.Press, 2014. · Zbl 1317.60030
[14] Gerald B. Folland., Real analysis. Wiley, second edition, 1999. · Zbl 0924.28001
[15] Subhashis Ghosal, Jayanta K. Ghosh, and Aad W. van der Vaart. Convergence rates of posterior distributions., Ann. Statist., 28(2):500-531, 2000. · Zbl 1105.62315
[16] Subhashis Ghosal and Aad W. van der Vaart., Fundamentals of nonparametric Bayesian inference. Cambridge University Press, New York, 2017. · Zbl 1376.62004
[17] Evarist Giné and Richard Nickl. Rates of contraction for posterior distributions in \(L^r\)-metrics \(, 1\leq r\leq \infty \)., Ann. Statist., 39(6) :2883-2911, 2011. · Zbl 1246.62095
[18] Evarist Giné and Richard Nickl., Mathematical foundations of infinite-dimensional statistical models. Cambridge University Press, 2016. · Zbl 1358.62014
[19] Matteo Giordano and Hanne Kekkonen. Bernstein-von Mises theorems and uncertainty quantification for linear inverse problems., arXiv preprint arXiv:1811.04058, 2018.
[20] Shota Gugushvili, Frank van der Meulen, and Peter Spreij. Nonparametric Bayesian inference for multidimensional compound Poisson processes., Mod. Stoch. Theory Appl., 2(1):1-15, 2015. · Zbl 1349.62115
[21] François Monard, Richard Nickl, and Gabriel P. Paternain. Efficient nonparametric Bayesian inference for \(X\)-ray transforms., Ann. Statist., 47(2) :1113-1147, 2019. · Zbl 1417.62060
[22] Michael H. Neumann and Markus Reiß. Nonparametric estimation for Lévy processes from low-frequency observations., Bernoulli, 15(1):223-248, 2009. · Zbl 1200.62095
[23] Richard Nickl. Donsker-type theorems for nonparametric maximum likelihood estimators., Probab. Theory Related Fields, 138(3-4):411-449, 2007. · Zbl 1113.60028
[24] Richard Nickl. Bernstein – von Mises theorems for statistical inverse problems I: Schrödinger equation., J. Eur. Math. Soc. (JEMS), to appear, 2018.
[25] Richard Nickl and Kolyan Ray. Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions., Ann. Statist., to appear.
[26] Richard Nickl and Markus Reiß. A Donsker theorem for Lévy measures., J. Funct. Anal., 263(10) :3306-3332, 2012. · Zbl 1310.60056
[27] Richard Nickl, Markus Reiß, Jakob Söhl, and Mathias Trabs. High-frequency Donsker theorems for Lévy measures., Probab. Th. Rel. Fields, 164:61-108, 2016. · Zbl 1333.60063
[28] Richard Nickl and Jakob Söhl. Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions., Ann. Statist., 45(4) :1664-1693, 2017. · Zbl 1411.62087
[29] Kalyanapuram R. Parthasarathy., Probability measures on metric spaces. Probability and Mathematical Statistics, No. 3. Academic Press, Inc., New York-London, 1967. · Zbl 0469.58006
[30] Kolyan Ray. Bayesian inverse problems with non-conjugate priors., Electron. J. Stat., 7 :2516-2549, 2013. · Zbl 1294.62107
[31] Kolyan Ray. Adaptive Bernstein – von Mises theorems in Gaussian white noise., Ann. Statist., 45(6) :2511-2536, 2017. · Zbl 1384.62158
[32] Andrew M. Stuart. Inverse problems: a Bayesian perspective., Acta Numer., 19:451-559, 2010. · Zbl 1242.65142
[33] Mathias Trabs. Information bounds for inverse problems with application to deconvolution and Lévy models., Ann. Inst. H. Poincaré, 51(4) :1620-1650, 2015. · Zbl 1346.60063
[34] Hans Triebel., Theory of function spaces. Birkhäuser Verlag, Basel, 1983. · Zbl 0546.46028
[35] Aad W. van der Vaart., Asymptotic statistics. Cambridge University Press, 1998. · Zbl 1013.62031
[36] Aad W. van der Vaart and Jon A. Wellner., Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996. · Zbl 0862.60002
[37] Bert van Es, Shota Gugushvili, and Peter Spreij. A kernel type nonparametric density estimator for decompounding., Bernoulli, 13(3):672-694, 2007. · Zbl 1129.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.