×

zbMATH — the first resource for mathematics

Rayleigh quotient minimization method for symmetric eigenvalue problems. (English) Zbl 07114261
Summary: In this paper, we present a new method, which is referred to as the Rayleigh quotient minimization method, for computing one extreme eigenpair of symmetric matrices. This method converges globally and attains cubic convergence rate locally. In addition, inexact implementations and its numerical stability of the Rayleigh quotient minimization method are explored. Finally, we use numerical experiments to demonstrate the convergence properties and show the competitiveness of the new method for solving symmetric eigenvalue problems.
MSC:
65 Numerical analysis
Software:
EIGIFP; JDQZ; lobpcg.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bai, Z-Z; Miao, C-Q, On local quadratic convergence of inexact simplified Jacobi-Davidson method, Linear Algebra Appl, 520, 215-241, (2017) · Zbl 1359.65055
[2] Bai, Z-Z; Miao, C-Q, On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems, Appl Math Lett, 72, 23-28, (2017) · Zbl 1373.65022
[3] Bai, Z-Z; Miao, C-Q; Jian, S., On multistep Rayleigh quotient iterations for Hermitian eigenvalue problems, Comput Math Appl, 77, 2396-2406, (2019)
[4] Crouzeix, M.; Philippe, B.; Sadkane, M., The Davidson method, SIAM J Sci Comput, 15, 62-76, (1994) · Zbl 0803.65042
[5] Genseberger, M.; Sleijpen, GLG, Alternative correction equations in the Jacobi-Davidson method, Numer Linear Algebra Appl, 6, 235-253, (1999) · Zbl 0983.65047
[6] Goldstein, AA; Price, JF, An effective algorithm for minimization, Numer Math, 10, 184-189, (1967) · Zbl 0161.35402
[7] Golub, GH; Ye, Q., An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J Sci Comput, 24, 312-334, (1999) · Zbl 1016.65017
[8] Grimes, RG; Lewis, JG; Simon, HD, A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM J Matrix Anal Appl, 15, 228-272, (1994) · Zbl 0803.65044
[9] Hestenes, MR; Karush, W., A method of gradients for the calculation of the characteristic roots and vectors of a real symmetric matrix, J Res Nat Bur Stand, 47, 45-61, (1951)
[10] Jian, S., A block preconditioned steepest descent method for symmetric eigenvalue problems, Appl Math Comput, 219, 10198-10217, (2013) · Zbl 1293.65055
[11] Jiang, W.; Wu, G., A thick-restarted block Arnoldi algorithm with modified Ritz vectors for large eigenproblems, Comput Math Appl, 60, 873-889, (2010) · Zbl 1201.65053
[12] Knyazev, AV, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J Sci Comput, 23, 517-541, (2001) · Zbl 0992.65028
[13] Miao, C-Q, A filtered-Davidson method for large symmetric eigenvalue problems, East Asian J Appl Math, 7, 21-34, (2017) · Zbl 1373.15018
[14] Miao, C-Q, Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation, J Comput Appl Math, 343, 363-372, (2018) · Zbl 1391.65088
[15] Miao, C-Q, Filtered Krylov-like sequence method for symmetric eigenvalue problems, Numer Algorithms, (2018)
[16] Morgan, RB; Scott, DS, Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems, SIAM J Sci Comput, 14, 585-593, (1993) · Zbl 0791.65022
[17] Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York · Zbl 1104.65059
[18] Ovtchinnikov, E., Cluster robustness of preconditioned gradient subspace iteration eigensolvers, Linear Algebra Appl, 415, 140-166, (2006) · Zbl 1101.65038
[19] Ovtchinnikov, EE, Sharp convergence estimates for the preconditioned steepest descent method for Hermitian eigenvalue problems, SIAM J Numer Anal, 43, 2668-2689, (2006) · Zbl 1113.65033
[20] Parlett BN (1998) The symmetric eigenvalue problems. SIAM, Philadelphia
[21] Saad, Y., On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J Numer Anal, 17, 687-706, (1980) · Zbl 0456.65016
[22] Saad, Y., Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems, Math Comput, 42, 567-588, (1984) · Zbl 0539.65013
[23] Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia · Zbl 1002.65042
[24] Saad Y (2011) Numerical methods for large eigenvalue problems, 2nd edn. SIAM, Philadelphia · Zbl 1242.65068
[25] Samokish, BA, The steepest descent method for an eigenvalue problem with semi-bounded operators, Izv Vyssh Uchebn Zaved Mat, 5, 105-114, (1958)
[26] Sleijpen, GLG; Vorst, HA, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J Matrix Anal Appl, 17, 401-425, (1996) · Zbl 0860.65023
[27] Stathopoulos, A.; Saad, Y., Restarting techniques for the (Jacobi-) Davidson symmetric eigenvalue methods, Electron Trans Numer Anal, 7, 163-181, (1998) · Zbl 0912.65027
[28] Zhou, Y-K, Studies on Jacobi-Davidson, Rayleigh quotient iteration, inverse iteration generalized Davidson and Newton updates, Numer Linear Algebra Appl, 13, 621-642, (2006) · Zbl 1174.65372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.