Benoist, Stéphane; Hongler, Clément The scaling limit of critical Ising interfaces is \(\mathrm{CLE}_3\). (English) Zbl 1467.60061 Ann. Probab. 47, No. 4, 2049-2086 (2019). Summary: In this paper, we consider the set of interfaces between \(+\) and \(-\) spins arising for the critical planar Ising model on a domain with \(+\) boundary conditions, and show that it converges to nested \(\mathrm{CLE}_3\).Our proof relies on the study of the coupling between the Ising model and its random cluster (FK) representation, and of the interactions between FK and Ising interfaces. The main idea is to construct an exploration process starting from the boundary of the domain, to discover the Ising loops and to establish its convergence to a conformally invariant limit. The challenge is that Ising loops do not touch the boundary; we use the fact that FK loops touch the boundary (and hence can be explored from the boundary) and that Ising loops in turn touch FK loops, to construct a recursive exploration process that visits all the macroscopic loops.A key ingredient in the proof is the convergence of Ising free arcs to the Free Arc Ensemble (FAE), established in [S. Benoist et al., Ann. Inst. Henri Poincaré, Probab. Stat. 52, No. 4, 1784–1798 (2016; Zbl 1355.60119)]. Qualitative estimates about the Ising interfaces then allow one to identify the scaling limit of Ising loops as a conformally invariant collection of simple, disjoint \(\mathrm{SLE}_3\)-like loops, and thus by the Markovian characterization of [S. Sheffield and W. Werner, Ann. Math. (2) 176, No. 3, 1827–1917 (2012; Zbl 1271.60090)] as a \(\mathrm{CLE}_3\).A technical point of independent interest contained in this paper is an investigation of double points of interfaces in the scaling limit of critical FK-Ising. It relies on the technology of A. Kemppainen and S. Smirnov [Ann. Probab. 45, No. 2, 698–779 (2017; Zbl 1393.60016)]. Cited in 1 ReviewCited in 20 Documents MSC: 60J67 Stochastic (Schramm-)Loewner evolution (SLE) 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 82B27 Critical phenomena in equilibrium statistical mechanics 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:Ising model; phase transition; free boundary conditions; Fortuin-Kasteleyn random-cluster model; criticality; duality; scaling limits; conformal invariance; random curves; Schramm-Loewner evolution; conformal loop ensembles Citations:Zbl 1355.60119; Zbl 1271.60090; Zbl 1393.60016 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Aru, J., Sepulveda, A. and Werner, W. On bounded-type thin local sets of the two-dimensional Gaussian free field. Available at arXiv:1603.0336v2. · Zbl 1487.60097 · doi:10.1017/S1474748017000160 [2] Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab.36 1421-1452. · Zbl 1165.60007 · doi:10.1214/07-AOP364 [3] Beffara, V. and Duminil-Copin, H. (2012). The self-dual point of the two-dimensional random-cluster model is critical for \(q\geq 1\). Probab. Theory Related Fields153 511-542. · Zbl 1257.82014 · doi:10.1007/s00440-011-0353-8 [4] Benoist, S., Duminil-Copin, H. and Hongler, C. (2016). Conformal invariance of crossing probabilities for the Ising model with free boundary conditions. Ann. Inst. Henri Poincaré Probab. Stat.52 1784-1798. · Zbl 1355.60119 · doi:10.1214/15-AIHP698 [5] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys.268 1-38. · Zbl 1117.60086 · doi:10.1007/s00220-006-0086-1 [6] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and \(\text{SLE}_6\): A proof of convergence. Probab. Theory Related Fields139 473-519. · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7 [7] Chelkak, D., Duminil-Copin, H. and Hongler, C. (2016). Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab.21 Paper No. 5, 28. · Zbl 1341.60124 · doi:10.1214/16-EJP3452 [8] Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A. and Smirnov, S. (2014). Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris352 157-161. · Zbl 1294.82007 · doi:10.1016/j.crma.2013.12.002 [9] Chelkak, D., Hongler, C. and Izyurov, K. (2015). Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2) 181 1087-1138. · Zbl 1318.82006 · doi:10.4007/annals.2015.181.3.5 [10] Chelkak, D. and Smirnov, S. (2012). Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math.189 515-580. · Zbl 1257.82020 · doi:10.1007/s00222-011-0371-2 [11] Friedli, S. and Velenik, Y. (2018). Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge Univ. Press, Cambridge. · Zbl 1407.82001 [12] Grimmett, G. (2006). The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften333. Springer, Berlin. · Zbl 1122.60087 [13] Hongler, C. (2010). Conformal Invariance of Ising Model Correlations. Ph.D. thesis, Univ. de Genève. Available at https://archive-ouverte.unige.ch/unige:18163. · Zbl 1304.82013 [14] Hongler, C. and Kytölä, K. (2013). Ising interfaces and free boundary conditions. J. Amer. Math. Soc.26 1107-1189. · Zbl 1284.82021 · doi:10.1090/S0894-0347-2013-00774-2 [15] Hongler, C., Kytölä, K. and Viklund, F. J. Conformal field theory at the lattice level: Discrete complex analysis and Virasoro structures. Available at arXiv:1307.4104v2. · Zbl 1504.82009 [16] Hongler, C. and Smirnov, S. (2013). The energy density in the planar Ising model. Acta Math.211 191-225. · Zbl 1287.82007 · doi:10.1007/s11511-013-0102-1 [17] Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Z. Phys.31 253-258. · Zbl 1439.82056 [18] Izyurov, K. (2015). Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Comm. Math. Phys.337 225-252. · Zbl 1318.82010 · doi:10.1007/s00220-015-2339-3 [19] Kemppainen, A. and Smirnov, S. Conformal invariance of boundary touching loops of FK Ising model. Available at arXiv:1509.08858. · Zbl 1422.60140 · doi:10.1007/s00220-019-03437-0 [20] Kemppainen, A. and Smirnov, S. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. Available at arXiv:1609.08527. [21] Kemppainen, A. and Smirnov, S. (2017). Random curves, scaling limits and Loewner evolutions. Ann. Probab.45 698-779. · Zbl 1393.60016 · doi:10.1214/15-AOP1074 [22] Lawler, G. F. (2005). Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs114. Amer. Math. Soc., Providence, RI. · Zbl 1074.60002 [23] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab.32 939-995. · Zbl 1126.82011 · doi:10.1214/aop/1079021469 [24] Miller, J., Sheffield, S. and Werner, W. (2017). CLE percolations. Forum Math. Pi5 e4, 102. · Zbl 1390.60356 · doi:10.1017/fmp.2017.5 [25] Pfister, C.-E. and Velenik, Y. (1999). Interface, surface tension and reentrant pinning transition in the \(2\) D Ising model. Comm. Math. Phys.204 269-312. · Zbl 0937.82016 · doi:10.1007/s002200050646 [26] Pommerenke, C. (1992). Boundary Behaviour of Conformal Maps. Grundlehren der Mathematischen Wissenschaften299. Springer, Berlin. · Zbl 0762.30001 [27] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math.118 221-288. · Zbl 0968.60093 · doi:10.1007/BF02803524 [28] Schramm, O. and Sheffield, S. (2009). Contour lines of the two-dimensional discrete Gaussian free field. Acta Math.202 21-137. · Zbl 1210.60051 · doi:10.1007/s11511-009-0034-y [29] Schramm, O. and Wilson, D. B. (2005). SLE coordinate changes. New York J. Math.11 659-669. · Zbl 1094.82007 [30] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J.147 79-129. · Zbl 1170.60008 · doi:10.1215/00127094-2009-007 [31] Sheffield, S. and Werner, W. (2012). Conformal loop ensembles: The Markovian characterization and the loop-soup construction. Ann. of Math. (2) 176 1827-1917. · Zbl 1271.60090 · doi:10.4007/annals.2012.176.3.8 [32] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math.333 239-244. · Zbl 0985.60090 [33] Smirnov, S. (2006). Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians. Vol. II 1421-1451. Eur. Math. Soc., Zürich. · Zbl 1112.82014 [34] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435-1467. · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.