×

The middle-scale asymptotics of Wishart matrices. (English) Zbl 1436.60019

Summary: We study the behavior of a real \(p\)-dimensional Wishart random matrix with \(n\) degrees of freedom when \(n, p \rightarrow \infty\) but \(p/n \rightarrow 0\). We establish the existence of phase transitions when \(p\) grows at the order \(n^{(K+1)/(K+3)}\) for every \(K \in \mathbb{N}\), and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the \(\mathcal{F}\)-conjugate of an absolutely continuous distribution, which is obtained from the Fourier transform of the square root of its density. In the case of the normalized Wishart distribution, this represents an extension of the \(t\)-distribution to the space of real symmetric matrices.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
60B10 Convergence of probability measures
60E10 Characteristic functions; other transforms

References:

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics118. Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[2] Bartlett, M. S. (1933). On the theory of statistical regression. Proc. Roy. Soc. Edinburgh Sect. A53 260-283. · Zbl 0008.02402 · doi:10.1017/S0370164600015637
[3] Bubeck, S. and Ganguly, S. (2018). Entropic CLT and phase transition in high-dimensional Wishart matrices. Int. Math. Res. Not. IMRN2 588-606. · Zbl 1407.82024
[4] Bubeck, S., Ding, J., Eldan, R. and Rácz, M. Z. (2016). Testing for high-dimensional geometry in random graphs. Random Structures Algorithms49 503-532. · Zbl 1349.05315 · doi:10.1002/rsa.20633
[5] Hardy, G. H., Littlewood, J. E. and Pólya, G. (1967). Inequalities, 2nd ed. Cambridge University Press.
[6] Hua, L. K. (1963). Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc., Providence, RI. · Zbl 0112.07402
[7] Jiang, T. and Li, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theoret. Probab.28 804-847. · Zbl 1333.15032 · doi:10.1007/s10959-013-0519-7
[8] Knuth, D. (1976). Big omicron and big omega and big theta. SIGACT News 18-24. · Zbl 1529.68028
[9] Ledoux, M. (2009). A recursion formula for the moments of the Gaussian orthogonal ensemble. Ann. Inst. Henri Poincaré Probab. Stat.45 754-769. · Zbl 1184.60003 · doi:10.1214/08-AIHP184
[10] Letac, G. and Massam, H. (2004). All invariant moments of the Wishart distribution. Scand. J. Stat.31 295-318. · Zbl 1063.62081 · doi:10.1111/j.1467-9469.2004.01-043.x
[11] Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb.72 507-536. · Zbl 0152.16101
[12] Matsumoto, S. (2012). General moments of the inverse real Wishart distribution and orthogonal Weingarten functions. J. Theoret. Probab.25 798-822. · Zbl 1256.15019 · doi:10.1007/s10959-011-0340-0
[13] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. · Zbl 0556.62028
[14] Rácz, M. Z. and Richey, J. (2018). A smooth transition from Wishart to GOE. J. Theoret. Probab. 1-9. · Zbl 1447.60027
[15] Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series32. Princeton Univ. Press, Princeton, NJ. · Zbl 0232.42007
[16] Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika20A 32-52. · JFM 54.0565.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.