zbMATH — the first resource for mathematics

Efficient relaxations for dense CRFs with sparse higher-order potentials. (English) Zbl 1423.90263
90C35 Programming involving graphs or networks
Full Text: DOI
[1] A. Adams, J. Baek, and M. Abraham, Fast high-dimensional filtering using the permutohedral lattice, in Proceedings of Eurographics, 2010.
[2] T. Ajanthan, A. Desmaison, R. Bunel, M. Salzmann, P. H. S. Torr, and M. P. Kumar, Efficient linear programming for dense CRFs, in Proceedings of CVPR, 2017.
[3] F. R. Bach, Duality between subgradient and conditional gradient methods, SIAM J. Optim., 25 (2015), pp. 115–129. · Zbl 1358.90155
[4] P. Baqué, T. Bagautdinov, F. Fleuret, and P. Fua, Principled parallel mean-field inference for discrete random fields, in Proceedings of CVPR, 2016.
[5] S. Chandra, N. Usunier, and I. Kokkinos, Dense and low-rank gaussian crfs using deep embeddings, in Proceedings of International Conference on Computer Vision, Vol. 2, 2017.
[6] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, Approximation algorithms for the metric labeling problem via a new linear programming formulation, in Proceedings of SODA, 2001. · Zbl 0989.90104
[7] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Semantic image segmentation with deep convolutional nets and fully connected CRFs, in Proceedings of ICLR, 2015.
[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2018), pp. 834–848.
[9] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Intell., 24 (2002), pp. 603–619.
[10] A. Desmaison, R. Bunel, P. Kohli, P. H. S. Torr, and M. P. Kumar, Efficient continuous relaxations for dense CRF, in Proceedings of ECCV, 2016.
[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The PASCAL Visual Object Classes Challenge \(2010\) (VOC \(2010)\) Results, .
[12] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logistics Q., 3 (1956), pp. 95–110.
[13] J. L. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1975.
[14] J. Kleinberg and E. Tardos, Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields, J. ACM, 49 (2002), pp. 616–639. · Zbl 1326.68336
[15] P. Kohli, P. Kumar, and P. Torr, P \(3\) & beyond: Solving energies with higher order cliques, in Proceedings of CVPR, 2007.
[16] P. Kohli, T. Minka, and J. Winn, MSRC Dataset, (2017).
[17] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, Cambridge, UK, 2009. · Zbl 1183.68483
[18] V. Kolmogorov and R. Zabih, What energy functions can be minimizedvia graph cuts?, IEEE Trans. Pattern Anal. Mach. Intell., 2 (2004), pp. 147–159.
[19] P. Krähenbühl and V. Koltun, Efficient inference in fully connected CRFs with gaussian edge potentials, in Proceedings of NIPS, 2011.
[20] P. Krähenbühl and V. Koltun, Parameter learning and convergent inference for dense random fields, in Proceedings of ICML, 2013.
[21] M. P. Kumar, V. Kolmogorov, and P. H. S. Torr, An analysis of convex relaxations for map estimation of discrete mrfs, J. Mach. Learn. Res., 10 (2008), pp. 71–106. · Zbl 1235.90092
[22] S. Lacoste-Julien, Convergence Rate of Frank-Wolfe for Non-Convex Objectives, , 2016.
[23] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, Block-coordinate Frank-Wolfe optimization for structural SVMs, in Proceedings of ICML, 2012.
[24] L. Ladicky, C. Russell, P. Kohli, and P. Torr, Graph cut based inference with co-occurrence statistics, in Proceedings of ECCV, 2010. · Zbl 1270.68350
[25] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, Associative hierarchical CRFs for object class image segmentation, in Proceedings of IEEE 12th Conference on Computer Vision, 2009, pp. 739–746.
[26] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of CVPR, 2015.
[27] N. Parikh and S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), pp. 123–131.
[28] P. Ravikumar and J. Lafferty, Quadratic programming relaxations for metric labeling and Markov random field map estimation, in Proceedings of ICML, 2006.
[29] A. Schwing and R. Urtasun, Fully Connected Deep Structured Networks, , 2015.
[30] J. Shotton, J. Winn, C. Rother, and A. Criminisi, Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, Int. J. Comput. Vis., 81 (2009), pp. 2–23.
[31] J. Snoek, H. Larochelle, and R. Adams, Practical bayesian optimization of machine learning algorithms, in Proceedings of NIPS, 2012. · Zbl 1433.68379
[32] M. Tappen, C. Liu, E. Adelson, and W. Freeman, Learning gaussian conditional random fields for low-level vision, in Proceedings of CVPR, 2007.
[33] A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing visual features for multiclass and multiview object detection, IEEE Trans. Pattern Anal. Mach. Intel., 29(2007), pp. 854–869.
[34] V. Vineet, J. Warrell, and P. H. S. Torr, Filter-based mean-field inference for random fields with higher-order terms and product label-spaces, in Computer Vision: ECCV 2012, Lecture Notes in Comput. Sci. 7576, Springer, New York, pp. 31–44. · Zbl 1328.68252
[35] P. Wang, C. Shen, and A. van den Hengel, Efficient SDP inference for fully-connected CRFs based on low-rank decomposition, in Proceedings of CVPR, 2015.
[36] X. Xiao and D. Chen, Multiplicative iteration for nonnegative quadratic programming, Numer. Linear Algebra Appl., submitted.
[37] Y. Zhang and T. Chen, Efficient inference for fully-connected CRFs with stationarity, in Proceedings of CVPR, 2012.
[38] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr, Conditional random fields as recurrent neural networks, in Proceedings of ICCV, 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.