Angular accuracy of steerable feature detectors.

*(English)*Zbl 1429.62190##### MSC:

62H12 | Estimation in multivariate analysis |

62M40 | Random fields; image analysis |

42C40 | Nontrigonometric harmonic analysis involving wavelets and other special systems |

94A08 | Image processing (compression, reconstruction, etc.) in information and communication theory |

##### Software:

Steerable pyramid
PDF
BibTeX
XML
Cite

\textit{Z. Püspöki} et al., SIAM J. Imaging Sci. 12, No. 1, 344--371 (2019; Zbl 1429.62190)

Full Text:
DOI

##### References:

[1] | J. Bigun, Optimal orientation detection of linear symmetry, in Proceedings of the First IEEE International Conference on Computer Vision, London, IEEE, Washington, DC, 1987, pp. 433–438. |

[2] | J. Bigun, T. Bigun, and K. Nilsson, Recognition by symmetry derivatives and the generalized structure tensor, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 1590–1605. |

[3] | J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986), pp. 679–698. |

[4] | N. Chenouard and M. Unser, 3D steerable wavelets in practice, IEEE Trans. Image Process., 21 (2012), pp. 4522–4533. · Zbl 1373.42043 |

[5] | B. Dan, A. W. K. Ma, E. H. Hároz, J. Kono, and M. Pasquali, Nematic-like alignment in SWNT thin films from aqueous colloidal suspensions, Ind. Eng. Chem. Res., 51 (2012), pp. 10232–10237. |

[6] | P. E. Danielsson, Rotation-Invariant Linear Operators with Directional Response, manuscript. |

[7] | I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992. |

[8] | A. Depeursinge and J. Fageot, Biomedical texture operators and aggregation functions: A methodological review and user’s guide, in Biomedical Texture Analysis, Elsevier, London, 2018, pp. 55–94. |

[9] | A. Depeursinge, A. Foncubierta-Rodriguez, D. Van De Ville, and H. Müller, Rotation-covariant texture learning using steerable Riesz wavelets, IEEE Trans. Image Process., 23 (2014), pp. 898–908. · Zbl 1374.94080 |

[10] | J. Fageot, E. Bostan, and M. Unser, Wavelet statistics of sparse and self-similar images, SIAM J. Imaging Sci., 8 (2015), pp. 2951–2975. · Zbl 1348.60059 |

[11] | M. Felsberg and G. Sommer, The monogenic signal, IEEE Trans. Signal Process., 49 (2001), pp. 3136–3144. · Zbl 1369.94139 |

[12] | W. Förstner, A feature based correspondence algorithm for image matching, Int. Arch. Photogram. Remote Sensing, 26 (1986), pp. 150–166. |

[13] | W. Freeman and E. Adelson, Steerable filters for early vision, image analysis, and wavelet decomposition, in Proceedings of the Third International Conference on Computer Vision, IEEE, Piscataway, NJ, 1990, pp. 406–415. |

[14] | W. Freeman and E. Adelson, The design and use of steerable filters, IEEE Trans. Pattern Anal. Mach. Intell., 13 (1991), pp. 891–906. |

[15] | W. T. Freeman, Steerable Filters and Local Analysis of Image Structure, Ph.D. thesis, MIT, Cambridge, MA, 1992. |

[16] | S. Held, M. Storath, P. Massopust, and B. Forster, Steerable wavelet frames based on the Riesz transform, IEEE Trans. Image Process., 19 (2010), pp. 653–667. · Zbl 1371.42043 |

[17] | M. Jacob and M. Unser, Design of steerable filters for feature detection using Canny-like criteria, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 1007–1019. |

[18] | G. Jacovitti and A. Neri, Multiresolution circular harmonic decomposition, IEEE Trans. Signal Process., 48 (2000), pp. 3242–3247. |

[19] | B. Jahne, Digital Image Processing: Concepts, Algorithms, and Scientific Applications, 4th ed., Springer, New York, 1997. · Zbl 0880.68137 |

[20] | H. Jiuxiang, A. Razdan, J. Femiani, C. Ming, and P. Wonka, Road network extraction and intersection detection from aerial images by tracking road footprints, IEEE Trans. Geosci. Remote Sensing, 45 (2007), pp. 4144–4157. |

[21] | N. Karssemeijer and G. te Brake, Detection of stellate distortions in mammograms, IEEE Trans. Med. Imaging, 15 (1996), pp. 611–619. |

[22] | S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory, Prentice Hall, Upper Saddle River, NJ, 1993. · Zbl 0803.62002 |

[23] | J. K. Kominiarczuk, K. Krajsek, and R. Mester, Highly accurate orientation estimation using steerable filters, in Proceedings of the International Conference on Image Processing, ICIP 2007, San Antonio, TX, IEEE, Piscataway, NJ, 2007, pp. 277–280. |

[24] | U. Köthe, Edge and junction detection with an improved structure tensor, in Pattern Recognition, Lecture Notes in Comput. Sci. 2781, Springer, Berlin, 2003, pp. 25–32. |

[25] | U. Köthe, Low-level feature detection using the boundary tensor, in Visualization and Processing of Tensor Fields, J. Weickert and H. Hagen, eds., Math. Vis., Springer, Berlin, 2006, pp. 63–79. |

[26] | K. Krajsek and R. Mester, An unified theory for steerable and quadrature filters, in VISAPP 2006: Proceedings of the First International Conference on Computer Vision Theory and Applications, 2 vol., Setúbal, Portugal, 2006, Setúbal INSTICE Press, Setúbal, Portugal, 2006, pp. 48–55. |

[27] | M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik, Using contours to detect and localize junctions in natural images, in Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR’08, Anchorage, AK, IEEE, Piscataway, NJ, 2008, pp. 1–8. |

[28] | B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), pp. 422–437. · Zbl 0179.47801 |

[29] | M. Michaelis and G. Sommer, A lie group approach to steerable filters, Pattern Recogn. Lett., 16 (1995), pp. 1165–1174. |

[30] | M. Muehlich, D. Friedrich, and T. Aach, Design and implementation of multisteerable matched filters, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), pp. 279–291. |

[31] | S. Olhede and G. Metikas, The monogenic wavelet transform, IEEE Trans. Signal Process., 57 (2009), pp. 3426–3441. · Zbl 1391.94350 |

[32] | N. Patton, T. Aslam, T. MacGillivray, I. Deary, B. Dhillon, R. Eikelboom, K. Yogesan, and I. Constable, Retinal image analysis: Concepts, applications and potential, Progr. Retinal Eye Res., 25 (2006), pp. 99–127. |

[33] | A. Pentland, Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6 (1984), pp. 661–674. |

[34] | P. Perona, Steerable-scalable kernels for edge detection and junction analysis, in Proceedings of the Second European Conference on Computer Vision (ECCV’92), Springer, Berlin, 1992, pp. 663–672. |

[35] | P. Perona, Deformable kernels for early vision, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), pp. 488–499. |

[36] | B. Pesquet-Popescu and J. Vehel, Stochastic fractal models for image processing, IEEE Signal Process. Mag., 19 (2002), pp. 48–62. |

[37] | T.-A. Pham, M. Delalandre, S. Barrat, and J.-Y. Ramel, Accurate junction detection and reconstruction in line-drawing images, in Proceedings of the 21st International Conference on Pattern Recognition ICPR’12, Tsukuba Science City, Japan, Curran Associates, Red Hook, NY, 2012, pp. 693–696. |

[38] | J. Portilla and E. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients, Int. J. Comput. Vis., 40 (2000), pp. 49–70. · Zbl 1012.68698 |

[39] | Z. Püspöki, M. Storath, D. Sage, and M. Unser, Transforms and operators for directional bioimage analysis: A survey, in Focus on Bio-Image Informatics, W. De Vos, S. Munck, and J.-P. Timmermans, eds., Adv. Anat., Embry. Cell Biol. 219, Springer, Cham, Switzerland, 2016, pp. 69–93. |

[40] | Z. Püspöki, V. Uhlmann, C. Vonesch, and M. Unser, Design of steerable wavelets to detect multifold junctions, IEEE Trans. Image Process., 25 (2016), pp. 643–657. · Zbl 1408.42032 |

[41] | Z. Püspöki, C. Vonesch, and M. Unser, Detection of symmetric junctions in biological images using 2-D steerable wavelet transforms, in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13), San Francisco, CA, IEEE, Piscataway, NJ, 2013, pp. 1488–1491. |

[42] | M. Reisert and H. Burkhardt, Harmonic filters for generic feature detection in 3D, in Proceedings of the Thirty-first Annual Symposium of the German Association for Pattern Recognition DAGM’09, J. Denzler, G. Notni, and H. Susse, eds., Lecture Notes in Comput. Sci. 5748, Springer, Berlin, 2009, pp. 131–140. |

[43] | J. Romero, S. Alexander, S. Baid, S. Jain, and M. Papadakis, The geometry and the analytic properties of isotropic multiresolution analysis, Adv. Comput. Math., 31 (2009), pp. 283–328. · Zbl 1170.65109 |

[44] | B. S. and J.-C. Olivo-Marin, Combining local filtering and multiscale analysis for edge, ridge, and curvilinear objects detection, IEEE Trans. Image Process., 19 (2010), pp. 74–84. · Zbl 1371.94051 |

[45] | D. Sage, F. Neumann, F. Hediger, S. Gasser, and M. Unser, Automatic tracking of individual fluorescence particles: Application to the study of chromosome dynamics, IEEE Trans. Image Process., 14 (2005), pp. 1372–1383. |

[46] | D. Schmitter, R. Delgado-Gonzalo, G. Krueger, and M. Unser, Atlas-free brain segmentation in \(3\) D proton-density-like MRI images, in Proceedings of the Eleventh IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’14), Beijing, People’s Republic of China, IEEE, Piscataway, NJ, 2014, pp. 629–632. |

[47] | M. Schuh, J. Banda, P. Bernasconi, R. Angryk, and P. Martens, A comparative evaluation of automated solar filament detection, Solar Phys., 289 (2014), pp. 2503–2524. |

[48] | E. Simoncelli and H. Farid, Steerable wedge filters for local orientation analysis, IEEE Trans. Image Process., 5 (1996), pp. 1377–1382. |

[49] | E. Simoncelli, W. Freeman, E. Adelson, and D. Heeger, Shiftable multiscale transforms, IEEE Trans. Inform. Theory, 38 (1992), pp. 587–607. |

[50] | E. Simoncelli and W. T. Freeman, The steerable pyramid: A flexible architecture for multi-scale derivative computation, in Proceedings of the Second IEEE International Conference on Image Processing ICIP’95, Vol. 3, Washington, DC, IEEE Computer Society, Los Alamitos, CA, 1995, pp. 444–447. |

[51] | H. Skibbe, Q. Wang, O. Ronneberger, H. Burkhardt, and M. Reisert, Fast computation of \(3\) D spherical Fourier harmonic descriptors—A complete orthonormal basis for a rotational invariant representation of three-dimensional objects, in Proceedings of the Twelfth IEEE International Conference on Computer Vision Workshops ICCV’09, Kyoto, Japan, IEEE, Piscataway, NJ, pp. 1863–1869. |

[52] | P. R. Smith, T. M. Peters, and R. H. T. Bates, Image reconstruction from finite numbers of projections, J. Phys. A, 6 (1973), pp. 361–382. · Zbl 0256.65063 |

[53] | R. Soulard, P. Carré, and C. Fernandez-Maloigne, Vector extension of monogenic wavelets for geometric representation of color images, IEEE Trans. Image Process., 22 (2013), pp. 1070–1083. · Zbl 1373.94381 |

[54] | P. Stoica and R. Moses, Spectral Analysis of Signals, Prentice-Hall, Upper Saddle River, NJ, 2005. |

[55] | P. Teo, Theory and Applications of Steerable Functions, Ph.D. thesis, Stanford University, Stanford, CA, 1998. |

[56] | P. Teo and Y. Hel-Or, Lie generators for computing steerable functions, Pattern Recogn. Lett., 19 (1998), pp. 7–17. · Zbl 0907.68212 |

[57] | P. Teo and Y. Hel-Or, Design of multiparameter steerable functions using cascade basis reduction, IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999), pp. 552–556. |

[58] | M. Unser and N. Chenouard, A unifying parametric framework for \(2\) D steerable wavelet transforms, SIAM J. Imaging Sci., 6 (2013), pp. 102–135. · Zbl 1279.68340 |

[59] | M. Unser, N. Chenouard, and D. Van De Ville, Steerable pyramids and tight wavelet frames in \(L_2({{R}}^d)\), IEEE Trans. Image Process., 20 (2011), pp. 2705–2721. · Zbl 1372.42037 |

[60] | M. Unser and P. Tafti, An Introduction to Sparse Stochastic Processes, Cambridge University Press, Cambridge, UK, 2014. · Zbl 1329.60002 |

[61] | J. Ward and M. Unser, Harmonic singular integrals and steerable wavelets in \(L_2({\mathbb{R}}^d)\), Appl. Comput. Harmon. Anal., 36 (2014), pp. 183–197. · Zbl 1347.42059 |

[62] | G.-S. Xia, J. Delon, and Y. Gousseau, Accurate junction detection and characterization in natural images, Int. J. Comput. Vis., 106 (2014), pp. 31–56. · Zbl 1328.68253 |

[63] | W. Yu, K. Daniilidis, and G. Sommer, Approximate orientation steerability based on angular Gaussians, IEEE Trans. Image Process., 10 (2001), pp. 193–205. · Zbl 1061.68581 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.