×

zbMATH — the first resource for mathematics

Disentangling and quantifying market participant volatility contributions. (English) Zbl 1422.91720
Summary: Thanks to the access to labeled orders on the CAC 40 index future provided by Euronext, we are able to quantify market participants contributions to the volatility in the diffusive limit. To achieve this result, we leverage the branching properties of Hawkes point processes. We find that fast intermediaries (e.g. market maker type agents) have a smaller footprint on the volatility than slower, directional agents. The branching structure of Hawkes processes allows us to examine also the degree of endogeneity of each agent behavior, and we find that high-frequency traders are more endogenously driven than other types of agents.
MSC:
91G20 Derivative securities (option pricing, hedging, etc.)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
Software:
Tick
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abergel, F. and Jedidi, A., A mathematical approach to order book modelling. Int. J. Theoretical Appl. Financ., 2013, 16, 1-40. doi: 10.1142/S0219024913500258 · Zbl 1292.91197
[2] Achab, M., Bacry, E., Gaïffas, S., Mastromatteo, I. and Muzy, J., Uncovering causality from multivariate Hawkes integrated cumulants. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 2017. · Zbl 06982948
[3] Achab, M., Bacry, E., Muzy, J. and Rambaldi, M., Analysis of order book flows using a non-parametric estimation of the branching ratio matrix. Quant. Finance, 2018, 18(2), 199-212. doi: 10.1080/14697688.2017.1403132 · Zbl 1405.62135
[4] Bacry, E. and Muzy, J.-F., Hawkes model for price and trades high-frequency dynamics. Quant. Finance, 2014, 14(7), 1147-1166. doi: 10.1080/14697688.2014.897000 · Zbl 1402.91750
[5] Bacry, E. and Muzy, J.-F., First-and second-order statistics characterization of Hawkes processes and non-parametric estimation. IEEE Trans. Inf. Theory, 2016, 62(4), 2184-2202. doi: 10.1109/TIT.2016.2533397 · Zbl 1359.62160
[6] Bacry, E., Delattre, S., Hoffmann, M. and Muzy, J.-F., Modelling microstructure noise with mutually exciting point processes. Quant. Finance, 2013, 13(1), 65-77. doi: 10.1080/14697688.2011.647054 · Zbl 1280.91073
[7] Bacry, E., Mastromatteo, I. and Muzy, J.F., Hawkes processes in finance. Market Microstructure and Liquidity, 2015, 1(1), 1550005. doi: 10.1142/S2382626615500057 · Zbl 1354.62004
[8] Bacry, E., Jaisson, T. and Muzy, J.F., Estimation of slowly decreasing Hawkes kernels: Application to high-frequency order book dynamics. Quant. Finance, 2016, 16(8), 1179-1201. doi: 10.1080/14697688.2015.1123287 · Zbl 1400.62232
[9] Bacry, E., Bompaire, M., Gaïas, S. and Poulsen, S., tick: A Python library for statistical learning, with a particular emphasis on time-dependent modeling. ArXiv e-prints, 2017.
[10] Bauwens, L. and Hautsch, N., Modelling financial high frequency data using point processes. In Handbook of Financial Time Series, edited by T. Mikosch, J.-P. Kreiß, R.A. Davis, and T.G. Andersen, pp. 953-979, 2009 (Springer: Berlin, Heidelberg). · Zbl 1178.91218
[11] Bellia, M., High frequency market making: Liquidity provision, adverse selection, and competition. Available at SSRN, 2017.
[12] Biais, B. and Foucault, T., HFT and market quality. Bankers, Markets & Investors, 2014, 128, 5-19.
[13] Bouchaud, J.-P., Agent-based models for market impact and volatility. In Handbook of Computational Economics, Volume 4, Chapter 7, edited by Cars Hommes and Blake LeBaron, pp. 393-436, 2018 (Elsevier: Amsterdam).
[14] Bouchaud, J., Donier, J. and Gould, M., Trades, Quotes and Prices, Financial Markets Under the Microscope, 2018 (Cambridge University Press: Cambridge).
[15] Brogaard, J., Hendershott, T. and Riordan, R., High-frequency trading and price discovery. Rev. Financ. Stud., 2014, 27(8), 2267-2306. doi: 10.1093/rfs/hhu032
[16] Cartea, A., Jaimungal, S. and Ricci, J., Buy low, sell high: A high frequency trading perspective. SIAM J. Financ. Math., 2014, 5(1), 415-444. doi: 10.1137/130911196 · Zbl 1308.91199
[17] Cartea, A., Jaimungal, S. and Ricci, J., Algorithmic trading, stochastic control, and mutually exciting processes. SIAM Rev., 2018, 60(3), 673-703. doi: 10.1137/18M1176968 · Zbl 1410.91411
[18] Cont, R., Stoikov, S. and Talreja, R., A stochastic model for order book dynamics. Oper. Res., 2010, 58(3), 549-563. doi: 10.1287/opre.1090.0780 · Zbl 1232.91719
[19] ESMA Economic Report No. 1, High-frequency trading activity in EU equity markets, 2014.
[20] Filimonov, V. and Sornette, D., Quantifying reflexivity in financial markets: Toward a prediction of flash crashes. Phys. Rev. E, 2012, 85(5), 056108. doi: 10.1103/PhysRevE.85.056108
[21] Foucault, T., Order flow composition and trading costs in a dynamic limit order market. J. Financ. Market, 1999, 2, 99-134. doi: 10.1016/S1386-4181(98)00012-3
[22] Hagströmer, B. and Nordén, L., The diversity of high-frequency traders. J. Financ. Markets, 2013, 16(4), 741-770. doi: 10.1016/j.finmar.2013.05.009
[23] Hansen, N.R., Reynaud-Bouret, P. and Rivoirard, V., Lasso and probabilistic inequalities for multivariate point processes. Bernoulli, 2015, 21(1), 83-143. doi: 10.3150/13-BEJ562 · Zbl 1375.60092
[24] Hardiman, S.J., Bercot, N. and Bouchaud, J.-P., Critical reflexivity in financial markets: A Hawkes process analysis. Eur. Phys. J. B, 2013, 86(10), 442. doi: 10.1140/epjb/e2013-40107-3
[25] Hongteng, X., Mehrdad, F. and Hongyuan, Z., Learning Granger causality for Hawkes processes. In Proceedings of The 33rd International Conference on Machine Learning, edited by M.F. Balcan and K.Q. Weinberger, Volume 48 of Proceedings of Machine Learning Research, New York, USA, pp. 1717-1726, 2016 (PMLR).
[26] Huang, W., Lehalle, C.A. and Rosenbaum, M., Simulating and analyzing order book data: The queue-reactive model. J. Amer. Statist. Assoc., 2015, 110, 107-122. doi: 10.1080/01621459.2014.982278 · Zbl 1373.62519
[27] Jovanović, S., Hertz, J. and Rotter, S., Cumulants of Hawkes point processes. Phys. Rev. E, 2015, 91(4), 042802. doi: 10.1103/PhysRevE.91.042802
[28] Kirilenko, A., Kyle, A.S., Samadi, M. and Tuzun, T., The flash crash: High-frequency trading in an electronic market. J. Finance, 2017, 72(3), 967-998. doi: 10.1111/jofi.12498
[29] Large, J., Measuring the resiliency of an electronic limit order book. J. Financ. Markets, 2007, 10(1), 1-25. doi: 10.1016/j.finmar.2006.09.001
[30] Liu, L.Y., Patton, A.J. and Sheppard, K., Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J. Econom., 2015, 187(1), 293-311. doi: 10.1016/j.jeconom.2015.02.008 · Zbl 1337.62329
[31] Lu, X. and Abergel, F., Limit order book modelling with high dimensional Hawkes processes. Available at HAL, 2017. · Zbl 1400.91556
[32] Megarbane, N., Lehalle, C.-A., Rosenbaum, M. and Saliba, P., The behaviour of high-frequency traders under different market stress scenarios. Available at SSRN, 2017.
[33] Menkveld, A.J., High frequency trading and the new market makers. J. Financ. Markets, 2013, 16(4), 712-740. doi: 10.1016/j.finmar.2013.06.006
[34] Parlour, C.A., Price dynamics in limit order markets. Rev. Financ. Stud., 1998, 11, 789-816. doi: 10.1093/rfs/11.4.789
[35] Rambaldi, M., Bacry, E. and Lillo, F., The role of volume in order book dynamics: A multivariate Hawkes process analysis. Quant. Finance, 2017, 17(7), 999-1020. doi: 10.1080/14697688.2016.1260759 · Zbl 1402.91729
[36] Rosu, I., A dynamic model of the limit order book. Rev. Financ. Stud., 2009, 22, 4601-4641. doi: 10.1093/rfs/hhp011
[37] Smith, E., Farmer, J.D., Gillemot, L. and Krishnamurthy, S., Statistical theory of the continuous double auction. Quant. Finance, 2003, 3, 481-514. doi: 10.1088/1469-7688/3/6/307 · Zbl 1405.91241
[38] Soros, G., The Alchemy of Finance, 2003 (John Wiley & Sons: Hoboken, NJ).
[39] Yang, S.Y., Qiao, Q., Beling, P.A., Scherer, W.T. and Kirilenko, A.A., Gaussian process-based algorithmic trading strategy identification. Quant. Finance, 2015, 15(10), 1683-1703. doi: 10.1080/14697688.2015.1011684 · Zbl 1398.91555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.