×

Modeling heat transfer process in grid-holes structure changed in time using fractional variable order calculus. (English) Zbl 1430.80007

Babiarz, Artur (ed.) et al., Theory and applications of non-integer order systems. Papers of the 8th conference on non-integer order calculus and its applications, Zakopane, Poland, September 20–21, 2016. Cham: Springer. Lect. Notes Electr. Eng. 407, 297-306 (2017).
Summary: The paper presents results of modelling the heat transfer process in specific grid-holes media whose geometry is changed in time. The process will be modeled based on variable fractional order calculus. Responses of variable structure heat transfer system will be obtained from numerical simulation based on finite elements method.
For the entire collection see [Zbl 1414.93003].

MSC:

80A19 Diffusive and convective heat and mass transfer, heat flow
35R11 Fractional partial differential equations
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dzielinski, A., Sierociuk, D.: Fractional order model of beam heating process and its experimental verification. In: Baleanu, D., Guvenc, Z.B., Machado, J.A.T. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 287-294. Springer, Netherlands (2010) · Zbl 1207.80006
[2] Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Ac. Tech. 58(4), 583-592 (2010) · Zbl 1220.80006
[3] Sierociuk, D., Dzielinski, A., Sarwas, G., Petras, I., Podlubny, I., Skovranek, T.: Modelling heat transfer in heterogeneous media using fractional calculus. Phil. Trans. Math. Phys. Eng. Sci. 371 (2013) · Zbl 1382.80004
[4] Dzielinski, A., Sarwas, G., Sierociuk, D.: Time domain validation of ultracapacitor fractional order model. In: 49th IEEE Conference on Decision and Control (CDC), pp. 3730-3735 (2010) · Zbl 1268.34091
[5] Dzielinski, A., Sierociuk, D.: Ultracapacitor modelling and control using discrete fractional order state-space model. Acta Montan. Slovaca 13(1), 136-145 (2008) · Zbl 1229.93143
[6] Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys. 36(6), 695-798 (1987)
[7] Koch, D.L., Brady, J.F.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids 31(5), 965-973 (1988) · Zbl 0643.76101
[8] Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Springer, Heidelberg (2010) · Zbl 1211.93002
[9] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, Cambridge (1974) · Zbl 0292.26011
[10] Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999) · Zbl 0924.34008
[11] Sierociuk, D., Malesza, W., Macias, M.: Equivalent switching strategy and analog validation of the fractional variable order derivative definition. In: Proceedings of European Control Conference, pp. 3464-3469 (2013)
[12] Sierociuk, D., Malesza, W., Macias, M.: On a new definition of fractional variable-order derivative. In: Proceedings of the 14th International Carpathian Control Conference (ICCC), pp. 340-345 (2013)
[13] Sierociuk, D., Malesza, W., Macias, M.: Switching scheme, equivalence, and analog validation of the alternative fractional variable-order derivative definition. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 3876-3881(2013)
[14] Sierociuk, D., Macias, M., Malesza, W.: Analog modeling of fractional switched-order derivatives: Experimental approach. In: Advances in the Theory and Applications of Non-integer Order Systems. pp. 271-280. Springer International Publishing, Heidelberg (2013)
[15] Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876-3888 (2015)
[16] Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order derivative: equivalent switching strategy, duality, and analog modeling. Circ. Syst. Signal Pr. 34(4), 1077-1113 (2015) · Zbl 1342.94132
[17] Sheng, H., Sun, H., Coopmans, C., Chen, Y., Bohannan, G.W.: Physical experimental study of variable-order fractional integrator and differentiator. In: Proceedings of The 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10 (2010)
[18] Ramirez, L., Coimbra, C.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D. 240(13), 1111-1118 (2011) · Zbl 1219.76054
[19] Sierociuk, D., Sakrajda, P.: Modeling of variable structure heat transfer process based on fractional variable order calculus. In: Proceedings of the 55nd IEEE Conference on Decision and Control, Las Vegas, NV, USA (2016). (submitted to)
[20] Sierociuk, D.: Fractional Variable Order Derivative Simulink Toolkit (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.