×

zbMATH — the first resource for mathematics

Known boundary emulation of complex computer models. (English) Zbl 1430.62238
MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
92C42 Systems biology, networks
Software:
GitHub; GPy; GPfit
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. Andrianakis, N. McCreesh, I. Vernon, T. McKinley, J. Oakley, R. Nsubuga, M. Goldstein, and R. White, Efficient history matching of a high dimensional individual based HIV transmission model, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 694–719. · Zbl 1387.62111
[2] I. Andrianakis, I. Vernon, N. McCreesh, T. McKinley, J. Oakley, R. Nsubuga, M. Goldstein, and R. White, Bayesian history matching of complex infectious dizease models using emulation: A tutorial and a case study on HIV in Uganda, PLoS Comput Biol., 11 (2015), e1003968.
[3] I. Andrianakis, I. Vernon, N. McCreesh, T. J. McKinley, J. E. Oakley, R. N. Nsubuga, M. Goldstein, and R. G. White, History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation, J. R. Stat. Soc. Ser. C Appl. Stat., 66 (2017), pp. 717–740, https://doi.org/10.1111/rssc.12198. · Zbl 1387.62111
[4] T. S. Bastos and A. O’Hagan, Diagnostics for Gaussian process emulators, Technometrics, 51 (2008), pp. 425–438.
[5] M. J. Bayarri, J. O. Berger, E. S. Calder, K. Dalbey, S. Lunagomez, A. K. Patra, E. B. Pitman, E. T. Spiller, and R. L. Wolpert, Using statistical and computer models to quantify volcanic hazards, Technometrics, 51 (2009), pp. 402–413, https://doi.org/10.1198/TECH.2009.08018.
[6] J. Bernardo and A. Smith, Bayesian Theory, Wiley Ser. Probab. Stat., Wiley, New York, 2006, https://books.google.co.uk/books?id=cl6nAAAACAAJ.
[7] A. Boukouvalas, P. Sykes, D. Cornford, and H. Maruri-Aguilar, Bayesian precalibration of a large stochastic microsimulation model, IEEE Trans. Intell. Transportation Syst., 15 (2014).
[8] R. G. Bower, I. Vernon, M. Goldstein, A. J. Benson, C. G. Lacey, C. M. Baugh, S. Cole, and C. S. Frenk, The parameter space of galaxy formation, Mon. Not. Roy. Astron. Soc., 96 (2010), pp. 717–729.
[9] P. S. Craig, M. Goldstein, A. H. Seheult, and J. A. Smith, Bayes linear strategies for history matching of hydrocarbon reservoirs, in Bayesian Statistics 5, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Clarendon Press, Oxford, UK, 1996, pp. 69–95.
[10] P. S. Craig, M. Goldstein, A. H. Seheult, and J. A. Smith, Pressure matching for hydrocarbon reservoirs: A case study in the use of Bayes linear strategies for large computer experiments (with discussion), in Case Studies in Bayesian Statistics, C. Gatsonis, J. S. Hodges, R. E. Kass, R. McCulloch, P. Rossi, and N. D. Singpurwalla, eds., Vol. 3, Springer, New York, 1997, pp. 36–93. · Zbl 0895.62105
[11] J. A. Cumming and M. Goldstein, Bayes linear uncertainty analysis for oil reservoirs based on multiscale computer experiments, in Handbook of Bayesian Analysis, A. O’Hagan and M. West, eds., Oxford University Press, Oxford, UK, 2009.
[12] J. A. Cumming and M. Goldstein, Small sample bayesian designs for complex high-dimensional models based on information gained using fast approximations, Technometrics, 51 (2009), pp. 377–388.
[13] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments, J. Amer. Statist. Assoc., 86 (1991), pp. 953–963.
[14] B. De Finetti, Theory of Probability, Vol. 1, Wiley, New York, 1974.
[15] M. Goldstein, Bayes linear analysis, in Encyclopaedia of Statistical Sciences, S. Kotz, C. B. Reed, N. Balakrishnan, B. Vidakovic, and N. L. Johnson, eds., Wiley, New York, 1999, pp. 29–34.
[16] M. Goldstein, A. Seheult, and I. Vernon, Accessing model accuracy, in Environmental Modelling: Finding Simplicity in Complexity, J. Wainwright and M. Mulligan, eds., 2nd ed., Wiley, New York, 2013, https://doi.org/10.1002/9781118351475.ch26.
[17] M. Goldstein and D. A. Wooff, Bayes Linear Statistics: Theory and Methods, Wiley, New York, 2007. · Zbl 1231.62033
[18] GPy: A Gaussian Process Framework in Python, http://github.com/SheffieldML/GPy (2012).
[19] R. K. S. Hankin, Introducing BACCO, an R bundle for Bayesian analysis of computer code output, J. Statist. Softw., 14 (2005).
[20] K. Heitmann, D. Higdon, M. White, S. Habib, B. J. Williams, E. Lawrence, and C. Wagner, The coyote universe II: Cosmological models and precision emulation of the nonlinear matter power spectrum, Astrophys. J., 705 (2009), pp. 156–174.
[21] D. Higdon, J. Gattiker, B. Williams, and M. Rightley, Computer model calibration using high-dimensional output, J. Amer. Statist. Assoc., 103 (2008), pp. 570–583. · Zbl 05564511
[22] P. B. Holden, N. R. Edwards, J. Hensman, and R. D. Wilkinson, ABC for climate: Dealing with expensive simulators, in Handbook of Approximate Bayesian Computation, Chapman & Hall/CRC Press, Boca Raton, FL, 2018.
[23] Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 408 (2000), pp. 796–815, https://doi.org/10.1038/35048692.
[24] S. E. Jackson, I. Vernon, and J. Liu, Bayesian uncertainty analysis establishes the link between the parameter space of a complex model of hormonal crosstalk in Arabidopsis root development and experimental measurements, Stat. Appl. Genet. Mol. Biol., arXiv:1801.01538v1 [stat.AP], submitted.
[25] J. S. Johnson, Z. Cui, L. A. Lee, J. P. Gosling, A. M. Blyth, and K. S. Carslaw, Evaluating uncertainty in convective cloud microphysics using statistical emulation, J. Adv. Model. Earth Sys., 7 (2015), pp. 162–187.
[26] M. E. Johnson, L. M. Moore, and D. Ylvisaker, Minimax and maximin distance designs, J. Statist. Plann. Inference, 26 (1990), pp. 131–148.
[27] M. C. Kennedy and A. O’Hagan, Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 425–464.
[28] J. Liu, S. Mehdi, J. Topping, J. Friml, and K. Lindsey, Interaction of PLS and PIN and hormonal crosstalk in Arabidopsis root development, Front. Plant Science, 4 (2013), https://doi.org/10.3389/fpls.2013.00075.
[29] B. MacDonald, P. Ranjan, and H. Chipman, GPfit: An R package for fitting a Gaussian process model to deterministic simulator outputs, J. Statist. Softw., 64 (2015), https://doi.org/10.18637/jss.v064.i12.
[30] N. McCreesh, I. Andrianakis, R. N. Nsubuga, M. Strong, I. Vernon, T. J. McKinley, J. E. Oakley, M. Goldstein, R. Hayes, and R. G. White, Universal test, treat, and keep: Improving ART retention is key in cost-effective HIV control in Uganda, BMC Infectious Dizeases, 17 (2017), https://doi.org/10.1186/s12879-017-2420-y.
[31] T. McKinley, I. Vernon, I. Andrianakis, N. McCreesh, J. Oakley, R. Nsubuga, M. Goldstein, and R. White, Approximate Bayesian computation and simulation-based inference for complex stochastic epidemic models, Statist. Sci., 33 (2018), pp. 4–18. · Zbl 1407.62406
[32] L. F. S. Rodrigues, I. Vernon, and R. G. Bower, Constraints to galaxy formation models using the galaxy stellar mass function, Mon. Not. Roy. Astron. Soc., 466 (2017), pp. 2418–2435.
[33] J. Rougier, Efficient emulators for multivariate deterministic functions, J. Comput. Graph. Statist., 17 (2008), pp. 827–843, https://doi.org/10.1198/106186008X384032.
[34] J. Rougier, A Representation Theorem for Stochastic Processes with Separable Covariance Functions, and its Implications for Emulation, arXiv:1702.05599 [math.ST], 2012.
[35] J. Rougier, S. Guillas, A. Maute, and A. D. Richmond, Expert knowledge and multivariate emulation: The thermosphere–ionosphere electrodynamics general circulation model (tie-gcm), Technometrics, 51 (2009), pp. 414–424, https://doi.org/10.1198/TECH.2009.07123.
[36] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statist. Sci., 4 (1989), pp. 409–435.
[37] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, Springer, New York, 2003.
[38] M. D. Schneider, L. Knox, S. Habib, K. Heitmann, D. Higdon, and C. Nakhleh, Simulations and cosmological inference: A statistical model for power spectra means and covariances, Phys. Rev. D, 78 (2008), 063529, https://doi.org/10.1103/PhysRevD.78.063529.
[39] M. H. Tan, Gaussian process modeling of a functional output with information from boundary and initial conditions and analytical approximations, Technometrics, 60 (2018).
[40] M. H. Tan, Gaussian process modeling with boundary information, Statist. Sinica, 28 (2018), pp. 621–648.
[41] I. Vernon, M. Goldstein, and R. G. Bower, Galaxy formation: A Bayesian uncertainty analysis, Bayesian Anal., 5 (2010), pp. 619–670. · Zbl 1330.85005
[42] I. Vernon, M. Goldstein, and R. G. Bower, Rejoinder for Galaxy formation: A Bayesian uncertainty analysis, Bayesian Anal., 5 (2010), pp. 697–708. · Zbl 1330.85006
[43] I. Vernon, M. Goldstein, and R. G. Bower, Galaxy formation: Bayesian history matching for the observable universe, Statist. Sci., 29 (2014), pp. 81–90. · Zbl 1332.85007
[44] I. Vernon and J. P. Gosling, A Bayesian Computer Model Analysis of Robust Bayesian Analyses, arXiv:1703.01234 [stat.ME], 2017.
[45] I. Vernon, J. Liu, M. Goldstein, J. Rowe, J. Topping, and K. Lindsey, Bayesian uncertainty analysis for complex systems biology models: Emulation, global parameter searches and evaluation of gene functions, BMC Systems Biol., 12 (2018).
[46] D. Williamson, M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jackson, and K. Yamazaki, History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble, Climate Dynamics, 41 (2013), pp. 1703–1729.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.