×

zbMATH — the first resource for mathematics

The Cosserat point element as an accurate and robust finite element formulation for implicit dynamic simulations. (English) Zbl 07118646
MSC:
74 Mechanics of deformable solids
76 Fluid mechanics
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ABAQUS [2014] “Abaqus 6.14 Online Documentation,” Version 6.11, Abaqus, Dassault Systmes.
[2] ,; ,, EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. Numer. Methods Eng., 36, 1311-1337, (1993) · Zbl 0772.73071
[3] ,; ,, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Eng., 158, 269-300, (1998) · Zbl 0954.74055
[4] ,; ,, A new dissipative time-stepping algorithm for frictional contact problems: Formulation and analysis, Comput. Methods Appl. Mech. Eng., 179, 151-178, (1999) · Zbl 0980.74044
[5] ,; ,, On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct., 83, 2513-2524, (2005)
[6] ,, Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme, Comput. Struct., 85, 437-445, (2007)
[7] ,, A survey of numerical methods and computer programs for dynamic structural analysis, Nucl. Eng. Des., 1, 23-34, (1976)
[8] ,; ,; ,, Efficient large scale non-linear transient analysis by finite elements, Int. J. Numer. Methods Eng., 10, 579-596, (1976)
[9] ,; ,, On the unconditional stability of an implicit algorithm for nonlinear structural dynamics, J. Appl. Mech., 42, 4, 865-869, (1975)
[10] ,; ,, Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. Methods Appl. Mech. Eng., 88, 311-340, (1991) · Zbl 0742.73019
[11] ,; ,, Assumed strain stabilization of the eight node hexahedral element, Comput. Methods Appl. Mech. Eng., 105, 225-260, (1993) · Zbl 0781.73061
[12] ,; ,, A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method, J. Appl. Mech., 60, 371-375, (1993) · Zbl 0775.73337
[13] ,; ,; ,, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100, 32-74, (1928) · JFM 54.0486.01
[14] ,; ,, A survey of direct time-integration methods in computational structural dynamicsI. Explicit methods, Comput. Struct., 31, 1371-1386, (1989) · Zbl 0702.73072
[15] ,; ,; ,; ,, RBDO analysis of the aircraft wing based aerodynamic behavior, Struct. Eng. Mech., 61, 441-451, (2017)
[16] ,; ,; ,, The analysis of the generalized-\(\alpha\) method for non-linear dynamic problems, Comput. Mech., 28, 83-104, (2002)
[17] ,; ,; ,, Numerical simulations of quasi-static indentation and low velocity impact of rohacell 51 WF foam, Int. J. Comput. Methods, 11, 1344004:1-1344004:14, (2014)
[18] ,; ,, A composite time integration scheme for dynamic adhesion and its application to gecko spatula peeling, Int. J. Comput. Methods, 11, 1350104:1-1350104:28, (2014)
[19] ,, Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid, Int. J. Comput. Methods, 12, 1550025:1-1550025:16, (2015) · Zbl 1359.76181
[20] ,; ,; ,, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 283-292, (1977)
[21] ,; ,; ,, Finite-element methods for nonlinear elastodynamics which conserve energy, J. Appl. Mech., 45, 2, 366-370, (1978) · Zbl 0392.73075
[22] ,; ,; ,; ,, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., 9, 603-637, (1972) · Zbl 0221.65115
[23] ,; ,, Numerical methods in structural dynamics, Can. J. Civil Eng., 1, 179-193, (1974)
[24] ,; ,, Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations, Comput. Mech., 40, 447-459, (2007) · Zbl 1167.74044
[25] ,; ,, An improved 3-D brick Cosserat point element for irregular shaped elements, Comput. Mech., 40, 979-1004, (2007) · Zbl 1168.74048
[26] ,; ,, A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structures, J. Mech. Mater. Struct., 3, 1465-1498, (2008)
[27] ,; ,; ,, Cosserat point element (CPE) for finite deformation of orthotropic elastic materials, Comput. Mech., 49, 525-544, (2012) · Zbl 1398.74341
[28] ,; ,, A 3D Cosserat point element (CPE) for nonlinear orthotropic solids: generalization for an initially distorted mesh and an arbitrary orientation of material orthotropy, Int. J. Numer. Methods Eng., 106, 3-31, (2016) · Zbl 1352.74046
[29] ,; ,; ,; ,; ,, Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm, Int. J. Adv. Manuf. Technol., 41, 407-413, (2002)
[30] ,, Unconditional stability in numerical time integration methods, J. Appl. Mech., 40, 417-421, (1973) · Zbl 0262.70022
[31] ,; ,, Constraint energy momentum algorithm and its application to non-linear dynamics of shells, J. Appl. Mech., 136, 293-315, (1996)
[32] ,; ,, Energy-conserving and decaying algorithms in non-linear structural dynamics, Int. J. Numer. Methods Eng., 45, 569-599, (1999) · Zbl 0946.74078
[33] ,; ,, Generalized energy-momentum method for non-linear adaptive shell dynamics, Comput. Methods Appl. Mech. Eng., 178, 343-366, (1999) · Zbl 0968.74030
[34] ,; ,, Time integration in the context of energy control and locking free finite elements, Arch. Comput. Methods Eng., 7, 299-332, (2000) · Zbl 0986.74005
[35] ,; ,, Impact simulations using smoothed finite element method, Int. J. Comput. Methods, 10, 1350012:1-1350012:20, (2013) · Zbl 1359.74337
[36] ,; ,; ,; Bedewi, N. E., Crashworthiness design optimization using successive response surface approximations, Comput. Mech., 29, 409-421, (2002) · Zbl 1146.74348
[37] ,; ,; ,, The simulation of sheet metal forming processes via integrating solid-shell element with explicit finite element method, Eng. Comput., 27, 273-284, (2011)
[38] ,; ,, Nonlinear finite element analysis of FRP-strengthened reinforced concrete panels under blast loads, Int. J. Comput. Methods, 13, 1641002:1-1641002:17, (2016)
[39] ,; ,; ,; ,, Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing, Comput. Mech., 36, 255-265, (2005) · Zbl 1138.74394
[40] ,; ,; ,, Highly efficient solid and solid-shell finite elements with mixed strain – displacement assumptions specifically set up for explicit dynamic simulations using symbolic programming, Comput. Struct., 154, 210-225, (2015)
[41] ,; ,, A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point, Int. J. Solids Struct., 40, 4585-4614, (2003) · Zbl 1054.74057
[42] ,, A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 67-94, (1959)
[43] ,; ,; ,; ,; ,, An application of the es-fem in solid domain for dynamic analysis of 2d fluidsolid interaction problems, Int. J. Comput. Methods, 10, 1340003:1-1340003:26, (2013) · Zbl 1359.74432
[44] ,, Practical aspects of numerical time integration, Comput. Struct., 7, 343-353, (1977) · Zbl 0356.70016
[45] ,; ,, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Eng., 20, 1685-1695, (1984) · Zbl 0544.73095
[46] ,; ,, A stabilization technique to avoid hourglassing in finite elasticity, Int. J. Numer. Methods Eng., 48, 79-109, (2000) · Zbl 0983.74070
[47] ,; ,; ,, A new locking-free brick element technique for large deformation problems in elasticity, Comput. Struct., 75, 291-304, (2000)
[48] ,; ,; ,; ,; ,; ,; ,, Numerical Methods in Industrial Forming Processes, Comparison of implicit and explicit finite element methods in the simulation of metal forming processes, 99-108, (1992), Balkema: Balkema, Rotterdam
[49] ,; ,, Finite element limit load analysis of thin-walled structures by ANSYS (implicit), LS-DYNA (explicit) and in combination, Thin-Walled Struct., 41, 227-244, (2003)
[50] ,; ,, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 29, 1595-1638, (1990) · Zbl 0724.73222
[51] ,; ,, Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Eng., 33, 1413-1449, (1992) · Zbl 0768.73082
[52] ,; ,, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys. (ZAMP), 43, 757-792, (1992) · Zbl 0758.73001
[53] ,; ,; ,, Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems, Comput. Methods Appl. Mech. Eng., 110, 359-386, (1993) · Zbl 0846.73068
[54] ,; ,, A new energy and momentum conserving algorithm for the non-linear dynamics of shells, Int. J. Numer. Methods Eng., 37, 2527-2549, (1994) · Zbl 0808.73072
[55] ,; ,; ,, Comparison of implicit and explicit finite element methods for dynamic problems, J. Mater. Process. Technol., 105, 110-118, (2000)
[56] ,; ,, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct., 26, 357-409, (1987) · Zbl 0609.73073
[57] ,; ,; ,; Boyce, M. C., Numerical simulations of sheet-metal forming, J. Mater. Process. Technol., 50, 168-179, (1995)
[58] ,; ,; ,, Improved explicit integration in plasticity, Int. J. Numer. Methods Eng., 81, 910-938, (2010) · Zbl 1183.74349
[59] ,; ,; ,, Linear and Quadratic Solid-Shell Elements for Quasi-Static and Dynamic Simulations of Thin 3D Structures: Application to a Deep Drawing Process, Stroj. Vestn. J. Mech. Eng., 63, 25-34, (2017)
[60] ,; ,; ,, An alpha modification of Newmark’s method, Int. J. Numer. Methods Eng., 15, 1562-1566, (1980) · Zbl 0441.73106
[61] ,; ,, On enhanced strain methods for small and finite deformations of solids, Comput. Mech., 18, 413-428, (1996) · Zbl 0894.73179
[62] ,; ,, A note on enhanced strain methods for large deformations, Comput. Methods Appl. Mech. Eng., 135, 201-209, (1996) · Zbl 0893.73072
[63] ,; ,; ,, Finite element analysis of the dynamic behavior of aluminum honeycombs, Int. J. Comput. Methods, 11, 1344001:1-1344001:16, (2014)
[64] ,; ,, An explicit dynamic method of rigid bodies-spring model, Int. J. Comput. Methods, 12, 1540014:1-1540014:15, (2015) · Zbl 1359.74336
[65] ,; ,; ,, Degenerated shell element with composite implicit time integration scheme for geometric nonlinear analysis, Int. J. Numer. Methods Eng., 105, 483-513, (2016)
[66] ,; ,; ,, A semi-explicit finite element method for dynamic analysis of dielectric elastomers, Int. J. Comput. Methods, 12, 1350108:1-1350108:28, (2015) · Zbl 1359.78023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.