×

Extensions of uniform algebras. (English) Zbl 1472.46050

Cole’s counterexample to the peak point conjecture [B. J. Cole, One-point parts and the peak point conjecture. Ph.D. dissertation, Yale University, New Haven, CT (1968)] provides a construction of extensions of uniform algebras having various desirable properties, and has been used in the theory of uniform algebras (e.g., [J. F. Feinstein, Stud. Math. 148, No. 1, 67–74 (2001; Zbl 1055.46035); Proc. Am. Math. Soc. 132, No. 8, 2389–2397 (2004; Zbl 1055.46036)]).
The paper under review introduces some new classes of uniform algebra extensions and investigates the properties that are inherited by any uniform algebra extensions such as being nontrivial, natural, regular and normal. The relationship between peak sets in the weak sense and the Shilov boundary of an extension to those of the original uniform algebra is studied as well.
Let \(X\) and \(Y\) be compact Hausdorff spaces, let \(A\) be a uniform algebra on \(X\) and \(B\) be a uniform algebra on \(Y\). If there exists a continuous surjection \(\Pi: Y \to X\) such that \(\Pi^*(A) \subseteq B\), then \(B\) is called a uniform algebra extension of \(A\). The author introduces a class of uniform algebra extensions called generalised Cole extensions, namely, if there exists a continuous surjection \(\Pi: Y \to X\) and a unital linear map \(T: C(X) \to C(Y)\) with \(\|T\|= 1\) such that \(T\circ \Pi^*= \mathrm{ id}_{C(X)}\), \(\Pi^*(A) \subseteq B\) and \(T(B)= A\). In this case, \(\Pi\) and \(T\) are called associated maps to the extension. It is shown in the paper, Section 5, that generalised Cole extensions preserve several properties of the original uniform algebra. The author also studies generalised Cole extensions implemented by a compact group. In general, a generalised Cole extension need not be implemented by a group; however, if the associated maps to the extension \(B\) satisfy \(\|\mathrm{id}_{C(Y)}- \Pi^*\circ T\|= 1\), then there exists a finite group \(G\) such that \(B\) is a generalised Cole extension implemented by \(G\). The paper is concluded with some examples and two open questions.

MSC:

46J10 Banach algebras of continuous functions, function algebras
47B48 Linear operators on Banach algebras

References:

[1] R. Arens and K. Hoffmann, Algebraic extension of normed algebras, Proc. Amer. Math. Soc. 7 (1956), 203-210. · Zbl 0073.33001 · doi:10.1090/S0002-9939-1956-0077901-3
[2] R. F. Basener, An example concerning peak points, Notices Amer. Math. Soc. 18 (1971), no. 2, 415-416.
[3] J.-E. Björk, Compact groups operating on Banach algebras, Math. Ann. 205 (1973), 281-297. · Zbl 0262.46051
[4] D. P. Blecher and C. Le Merdy, Operator Algebras and Their Modules—An Operator Space Approach, London Math. Soc. Monogr. (N.S.) 30, Oxford University Press, Oxford, 2004. · Zbl 1061.47002
[5] D. P. Blecher and M. Neal, Completely contractive projections on operator algebras, Pacific J. Math. 283 (2016), no. 2, 289-324. · Zbl 1356.46039 · doi:10.2140/pjm.2016.283.289
[6] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, 1969. · Zbl 0199.46103
[7] B. J. Cole, One-point parts and the peak point conjecture, Ph.D. dissertation, Yale University, New Haven, CT, 1968.
[8] B. J. Cole and T. W. Gamelin, Tight uniform algebras and algebras of analytic functions, J. Funct. Anal. 46 (1982), no. 2, 158-220. · Zbl 0569.46034 · doi:10.1016/0022-1236(82)90034-9
[9] J. Conway, A Course in Functional Analysis, 2nd ed., Grad. Texts in Math. 96, Springer, New York, 1990. · Zbl 0706.46003
[10] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N.S.) 24, Oxford University Press, New York, 2000. · Zbl 0981.46043
[11] H. G. Dales, J. F. Feinstein, and H. L. Pham, Factorization in commutative Banach algebras, in preparation. · Zbl 1471.46051
[12] T. Dawson, “A survey of algebraic extensions of commutative, unital normed algebras” in Function Spaces (Edwardsville, 2002), Contemp. Math. 328, Amer. Math. Soc., Providence, 2003, 157-170. · Zbl 1062.46040
[13] T. Dawson, Extensions of normed algebras, Ph.D. dissertation, University of Nottingham, Nottingham, UK, 2003. · Zbl 1062.46040
[14] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969. · Zbl 0176.00801
[15] J. F. Feinstein, A nontrivial, strongly regular uniform algebra, J. Lond. Math. Soc. (2) 45 (1992), no. 2, 288-300. · Zbl 0712.46026 · doi:10.1112/jlms/s2-45.2.288
[16] J. F. Feinstein, Trivial Jensen measures without regularity, Studia Math. 148 (2001), no. 1, 67-74. · Zbl 1055.46035 · doi:10.4064/sm148-1-6
[17] J. F. Feinstein, A counterexample to a conjecture of S. E. Morris, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2389-2397. · Zbl 1055.46036
[18] J. F. Feinstein and A. J. Izzo, A general method for constructing essential uniform algebras, Studia Math. 246 (2019), no. 1, 47-61. · Zbl 1470.46078 · doi:10.4064/sm170907-23-2
[19] G. B. Folland, A Course in Abstract Harmonic Analysis, 2nd ed., Textb. Math., CRC, Boca Raton, FL, 2016. · Zbl 1342.43001
[20] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969. · Zbl 0213.40401
[21] T. W. Gamelin, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser. 32, Cambridge University Press, Cambridge, 1978. · Zbl 0418.46042
[22] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I: Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed., Grundlehren Math. Wiss. 115, Springer, Berlin, 1979. · Zbl 0416.43001
[23] A. J. Izzo, Uniform algebras invariant under transitive group actions, Indiana Univ. Math. J. 59 (2010), no. 2, 417-426. · Zbl 1270.46044 · doi:10.1512/iumj.2010.59.4032
[24] M. I. Karahanjan, Some algebraic characterizations of the algebra of all continuous functions on a locally connected compactum (in Russian), Mat. Sb. (N.S.) 107(149) (1978), no. 3, 416-434; English translation in Sb. Math. 35 (1979), 681-696. · Zbl 0487.46033
[25] J. L. Kelley, Averaging operators on \(C_{\infty }(X)\), Illinois J. Math. 2 (1958), 214-223. · Zbl 0080.32001
[26] J. A. Lindberg, Jr., Algebraic extensions of commutative Banach algebras, Pacific J. Math. 14 (1964), 559-583. · Zbl 0142.10203 · doi:10.2140/pjm.1964.14.559
[27] J. A. Lindberg, Jr., Integral extensions of commutative Banach algebras, Canad. J. Math. 25 (1973), 673-686. · Zbl 0247.46064
[28] S. P. Lloyd, On extreme averaging operators, Proc. Amer. Math. Soc. 14 (1963), 305-310. · Zbl 0112.34201 · doi:10.1090/S0002-9939-1963-0159234-3
[29] R. McKissick, A nontrivial normal sup norm algebra, Bull. Amer. Math. Soc. (N.S.) 69 (1963), 391-395. · Zbl 0113.31502 · doi:10.1090/S0002-9904-1963-10940-4
[30] V. G. Narmaniya, Construction of algebraically closed extensions of commutative Banach algebras (in Russian), Trudy Tbiliss Mat. Inst. Razmadze Akad. 69 (1982), 154-162; English translation in Trans. A. Razmadze Math. Inst. 69 (1982), 154-162. · Zbl 0532.46030
[31] H. Rossi, The local maximum modulus principle, Ann. of Math. (2) 72 (1960), 1-11. · Zbl 0099.32703 · doi:10.2307/1970145
[32] E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson, 1971. · Zbl 0286.46049
[33] J. Tomiyama, On the projection of norm one in \(W^{\ast }\)-algebras, Proc. Japan Acad. 33 (1957), 608-612. · Zbl 0081.11201
[34] F. B. Wright, Generalized means, Trans. Amer. Math. Soc. 98 (1961), 187-203. · Zbl 0122.35005 · doi:10.1090/S0002-9947-1961-0154107-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.