×

Carleson measures on circular domains and canonical embeddings of Hardy spaces into function lattices. (English) Zbl 1439.46021

Summary: We study general variants of spaces of holomorphic functions on circular domains on the complex plane. We define Hardy-type spaces generated by Banach function lattices, for which we prove the Carleson theorem. We also analyze canonical embeddings of such spaces into appropriate function lattices. Finally, we study composition operators on Hardy-type spaces on circular domains and characterize order-boundedness of such maps.

MSC:

46E15 Banach spaces of continuous, differentiable or analytic functions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988. · Zbl 0647.46057
[2] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. · Zbl 0344.46071
[3] I. Chalendar and J. R. Partington, Approximation problems and representations of Hardy spaces in circular domains, Studia Math. 136 (1999), no. 3, 255-269. · Zbl 0952.30033
[4] I. Chalendar and J. R. Partington, Interpolation between Hardy spaces on circular domains with applications to approximation, Arch. Math. (Basel) 78 (2002), no. 3, 223-232. · Zbl 1016.30027 · doi:10.1007/s00013-002-8240-2
[5] J. B. Conway, Functions of One Complex Variable, II, Grad. Texts in Math. 159, Springer, New York, 1995. · Zbl 0887.30003
[6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995. · Zbl 0873.47017
[7] P. L. Duren, Theory of \(H^p\) Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970. · Zbl 0215.20203
[8] S. D. Fisher, Function Theory on Planar Domains: A Second Course in Complex Analysis, Wiley, New York, 1983. · Zbl 0511.30022
[9] J. B. Garnett and D. E. Marshall, Harmonic Measure, New Math. Monogr. 2, Cambridge Univ. Press, Cambridge, 2005. · Zbl 1077.31001
[10] S. G. Kreĭn, Y. I. Petunīn, and E. M. Semënov, Interpolation of Linear Operators, Transl. Math. Monogr. 54, Amer. Math. Soc., Providence, 1982. · Zbl 0493.46058
[11] P. Lefèvre, D. Li, H. Queffélec, and L. Rodríguez-Piazza, Composition operators on Hardy-Orlicz spaces, Mem. Amer. Math. Soc. 207 (2010), no. 974. · Zbl 1200.47035
[12] M. Lengfield, Duals and envelopes of some Hardy-Lorentz spaces, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1401-1409. · Zbl 1074.32002 · doi:10.1090/S0002-9939-04-07656-7
[13] M. Mastyło and P. Mleczko, Absolutely summing multipliers on abstract Hardy spaces, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 6, 883-902. · Zbl 1191.46022 · doi:10.1007/s10114-009-7407-1
[14] M. Mastyło and L. Rodríguez-Piazza, Carleson measures and embeddings of abstract Hardy spaces into function lattices, J. Funct. Anal. 268 (2015), no. 4, 902-928. · Zbl 1320.46024
[15] P. Mleczko and R. Szwedek, Interpolation of Hardy spaces on circular domains, Math. Nachr. 290 (2017), no. 14-15, 2322-2333. · Zbl 1377.30047 · doi:10.1002/mana.201600199
[16] Z. Qiu, Carleson measures on circular domains, Houston J. Math. 31 (2005), no. 4, 1199-1206. · Zbl 1100.30044
[17] B.-Z. A. Rubshtein, M. A. Muratov, G. Y. Grabarnik, and Y. S. Pashkova, Foundations of Symmetric Spaces of Measurable Functions, Dev. Math. 45, Springer, Cham, 2016. · Zbl 1361.42001
[18] W. Rudin, Analytic functions of class \(H_p\), Trans. Amer. Math. Soc. 78 (1955), 46-66. · Zbl 0064.31203
[19] M. Rzeczkowski, Composition operators on Hardy-Orlicz spaces on planar domains, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 593-609. · Zbl 06766382 · doi:10.5186/aasfm.2017.4240
[20] M. Rzeczkowski, Classical properties of composition operators on Hardy-Orlicz spaces on planar domains, J. Aust. Math. Soc. 107 (2018), no. 2, 256-271. · Zbl 1508.47052
[21] D. Sarason, The \(H^p\) spaces of an annulus, Mem. Amer. Math. Soc. 56 (1965), 1-78. · Zbl 0127.07002
[22] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 875-889. · Zbl 0760.46060 · doi:10.5802/aif.1313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.