×

Weak frames in Hilbert \(C^*\)-modules with application in Gabor analysis. (English) Zbl 1434.42041

Given a \(C^\ast\) algebra \(A\) the author considers the (left) Hilbert \(C^\ast\)-module \(\ell^2(A)\) defined as \[ \ell^2(A) = \{(a_n)_n:\ a_n\in A,\ \sum_{n=1}^\infty a_n a_n^\ast \ \mbox{converges in norm in}\ A\}. \] The goal of section 2 is to describe the adjointable dual \(\ell^2(A)^\ast\) and the dual \(\ell^2(A)^\prime,\) consisting on those bounded module maps from \(\ell^2(A)\) into \(A.\) In Theorem 2.3, \(\ell^2(A)^\prime\) is identified with \[ \ell^2_{\mathrm{strong}}(LM(A)) = \{(c_n)n:\ c_n\in LM(A),\ \sup_N\|\sum_{n=1}^N c_n c_n^\ast\| < \infty\}, \] where \(LM(A)\) stands for the set of left multipliers of \(A.\) The adjointable dual \(\ell^2(A)^\ast\) coincides with the set \(M\left(\ell^2(A)\right)\) of multipliers of \(\ell^2(A).\) If \(A\) is a von Newmann algebra then \(\ell^2(A)^\prime\) is antilinearly isometrically isomorphic to the Hilbert \(A\)-module \(\ell^2_{\mathrm{strong}}(A),\) and it is self-dual. In section 3, the author introduces the concept of a weak Bessel sequence and a weak frame in a self-dual Hilbert \(C^\ast\)-module \(X\) over a von Newmann algebra \(A.\) The corresponding analysis operator \(U:X\to \ell^2_{\mathrm{strong}}(A)\) and its adjoint, the synthesis operator, are discussed in Theorem 3.4. The invertibility of \(U^\ast U\) is the content of Theorem 3.15. Section 4 discusses a sufficient condition on a sequence \(\left(x_n\right)_n,\) described in terms of Gram matrices, to ensure the weak Bessel property under the additional condition that the von Newmann algebra \(A\) is commutative. Section 5 describes a class of Hilbert \(C^\ast\)-modules that are naturally connected to Gabor analysis. Let \(L^\infty_a\left(\ell^2\right)\) denote the set of those measurable functions \(f:{\mathbb R}\to {\mathbb C}\) such that \(\mbox{ess}\sup_{x\in [0,a]}\sum_{n\in {\mathbb Z}}|f(x-na)|^2 < \infty.\) \(L^\infty_a\left(\ell^2\right)\) is a self-dual Hilbert \(C^\ast\)-module over the von Newmann algebra \(L^\infty[0,a]\) when it is endowed with the vector valued inner product \[ L^\infty_a\left(\ell^2\right)\times L^\infty_a\left(\ell^2\right)\to L^\infty[0,a],\ \ (f,g)\mapsto \sum_{n\in {\mathbb Z}}f(x-na)\overline{g(x-na)} \] (Theorem 5.6). A correspondence between Gabor Bessel sequences (Gabor frames) in \(L^2({\mathbb R})\) and weak Bessel sequences (weak frames) of translates in the Hilbert \(C^\ast\)-modules \(L^\infty_a\left(\ell^2\right)\) is established in Theorem 5.9. This correspondence permits to reinterpret in section 6 some of the classical results from Gabor analysis. In particular, a Walnut representation of the frame operator of Gabor Bessel sequences in \(L^2({\mathbb R})\) is obtained without the assumption that the windows belong to the Wiener space or satisfy the CC condition.

MSC:

42C15 General harmonic expansions, frames
46L08 \(C^*\)-modules
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46L10 General theory of von Neumann algebras

References:

[1] L. Arambašić, On frames for countably generated Hilbert \(C^*\)-modules, Proc. Amer. Math. Soc. 135 (2007), no. 2, 469-478. · Zbl 1116.46050
[2] L. Arambašić and D. Bakić, Frames and outer frames for Hilbert \(C^*\)-modules, Linear Multilinear Algebra 65 (2017), no. 2, 381-431. · Zbl 1367.46048
[3] D. Bakić and B. Guljaš, Extensions of Hilbert \(C^*\)-modules, Houston J. Math. 30 (2004), no. 2, 537-558. · Zbl 1069.46032
[4] C. de Boor, R. A. DeVore, and A. Ron, Approximation from shift-invariant subspaces of \(L_2(\mathbb{R}^d)\), Trans. Amer. Math. Soc. 341 (1994), no. 2, 787-806. · Zbl 0790.41012
[5] C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in \(L_2(\mathbb{R}^d)\), J. Funct. Anal. 119 (1994), no. 1, 37-78. · Zbl 0806.46030 · doi:10.1006/jfan.1994.1003
[6] P. G. Casazza, O. Christensen, and A. J. E. M. Janssen, “Classifying tight Weyl-Heisenberg frames” in The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999), Contemp. Math. 247, Amer. Math. Soc., Providence, 1999, 131-148. · Zbl 0960.42006
[7] P. G. Casazza, O. Christensen, and A. J. E. M. Janssen, Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, J. Funct. Anal. 180 (2001), no. 1, 85-147. · Zbl 0983.42023 · doi:10.1006/jfan.2000.3673
[8] P. G. Casazza and M. C. Lammers, “Bracket products for Weyl-Heisenberg frames” in Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, 2003, 71-98. · Zbl 1027.42027
[9] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, 2003. · Zbl 1017.42022
[10] M. Coco and M. C. Lammers, A Hilbert \(C^*\)-module for Gabor systems, preprint, arXiv:math/0102165v1 [math.FA].
[11] H. G. Feichtinger and A. J. E. M. Janssen, Validity of WH-frame bound conditions depends on lattice parameters, Appl. Comput. Harmon. Anal. 8 (2000), no. 1, 104-112. · Zbl 0944.42027 · doi:10.1006/acha.2000.0281
[12] M. Frank, Self-duality and \(C^*\)-reflexivity of Hilbert \(C^*\)-moduli, Z. Anal. Anwend. 9 (1990), no. 2, 165-176. · Zbl 0682.46033
[13] M. Frank and D. R. Larson, Frames in Hilbert \(C^*\)-modules and \(C^*\)-algebras, J. Operator Theory 48 (2002), no. 2, 273-314. · Zbl 1029.46087
[14] K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, 2001. · Zbl 0966.42020
[15] K. Gröchenig, The mystery of Gabor frames, J. Fourier Anal. Appl. 20 (2014), no. 4, 865-895. · Zbl 1309.42045 · doi:10.1007/s00041-014-9336-3
[16] C. Heil, A Basis Theory Primer, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2002. · Zbl 1227.46001
[17] M. S. Jakobsen and F. Luef, Duality of Gabor frames and Heisenberg modules, preprint, arXiv:1806.05616v3 [math.FAA]. · Zbl 1439.46044 · doi:10.1142/S0129167X19500514
[18] G. G. Kasparov, Hilbert \(C^*\)-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133-150. · Zbl 0456.46059
[19] C. Lance, Hilbert \(C^*\)-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser. 210, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0822.46080
[20] H. Lin, Bounded module maps and pure completely positive maps, J. Operator Theory 26 (1991), no. 1, 121-138. · Zbl 0791.46032
[21] F. Luef, Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal. 257 (2009), no. 6, 1921-1946. · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[22] F. Luef, Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc. 139 (2011), no. 2, 571-582. · Zbl 1213.42121 · doi:10.1090/S0002-9939-2010-10489-6
[23] B. Magajna, Hilbert \(C^*\)-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997), no. 3, 849-852. · Zbl 0865.46038
[24] V. M. Manuilov and E. V. Troitsky, Hilbert \(C^*\)-Modules, Transl. Math. Monogr. 226, Amer. Math. Soc., Providence, 2005. · Zbl 1074.46001
[25] W. L. Paschke, Inner product modules over \(B^*\)-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468. · Zbl 0239.46062
[26] G. K. Pedersen, \(C^*\)-Algebras and Their Automorphism Groups, London Math. Soc. Monogr. 14, Academic Press, London, 1979. · Zbl 0416.46043
[27] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-trace \(C^*\)-algebras, Math. Surveys Monogr. 60, Amer. Math. Soc., Providence, 1998. · Zbl 0922.46050
[28] A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of \(L_2(\mathbb{R}^d)\), Canad. J. Math. 47 (1995), no. 5, 1051-1094. · Zbl 0838.42016
[29] A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in \(L_2(\mathbb{R}^d)\), Duke Math. J. 89 (1997), no. 2, 237-282. · Zbl 0892.42017
[30] N. E. Wegge-Olsen, K-theory and \(C^*\)-Algebras: A Friendly Approach, Oxford Univ. Press, New York, 1993. · Zbl 0780.46038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.