zbMATH — the first resource for mathematics

A second-order cone model of transmission planning with alternating and direct current lines. (English) Zbl 1430.90168
Summary: We construct a model for transmission planning with both alternating and direct current lines, the latter of which can be interfaced via either line-commutated converters or voltage-source converters. The transmission expansion problem is nonlinear and nonconvex. Thus, nonlinear solvers cannot guarantee their convergence to the global optimum of the problem. We use relaxations and approximations to formulate a mixed-integer second-order cone transmission expansion model, which can be solved to optimality by current industrial solvers. We base our formulation on the branch flow relaxation. We include losses and reactive power placement, and consider direct current lines connected by both line-commutated converters and voltage-sourced converters. We show that our approach lowers the expansion cost on 6-bus and 24-bus system examples. We evaluate the feasibility of our formulation using a semidefinite relaxation of optimal power flow and find that the resulting plan admits feasible or close to feasible power flows.
90B10 Deterministic network models in operations research
90B90 Case-oriented studies in operations research
90C11 Mixed integer programming
90C20 Quadratic programming
90C25 Convex programming
Gurobi; Mosek; MATPOWER; CVXPY
Full Text: DOI
[1] Ahmed, H. M.; Eltantawy, A. B.; Salama, M., A generalized approach to the load flow analysis of AC-DC hybrid distribution systems, IEEE Transactions on Power Systems, 33, 2, 2117-2127, (2018)
[2] Ahmed, H. M.; Eltantawy, A. B.; Salama, M. M., A planning approach for the network configuration of AC-DC hybrid distribution systems, IEEE Transactions on Smart Grid, 9, 3, 2203-2213, (2018)
[3] Agrawal, A.; Diamond, S.; Verschueren, R.; Boyd, S., A rewriting system for convex optimization problems, Journal of Control and Decision, 5, 1, 42-60, (2018)
[4] Bahrami, S.; Therrien, F.; Wong, V. W.; Jatskevich, J., Semidefinite relaxation of optimal power flow for AC-DC grids, IEEE Transactions on Power Systems, 32, 1, 289-304, (2017)
[5] Bahrman, M. P.; Johnson, B. K., The ABCs of HVDC transmission technologies, IEEE Power and Energy Magazine, 5, 2, 32-44, (2007)
[6] Baradar, M.; Hesamzadeh, M. R.; Ghandhari, M., Second-order cone programming for optimal power flow in VSC-type AC-DC grids, IEEE Transactions on Power Systems, 28, 4, 4282-4291, (2013)
[7] Barnes, M.; Van Hertem, D.; Teeuwsen, S. P.; Callavik, M., HVDC systems in smart grids, Proceedings of the IEEE, 105, 11, 2082-2098, (2017)
[8] Beerten, J.; Cole, S.; Belmans, R., A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems, Proceedings of IEEE PES general meeting, (2010)
[9] Beerten, J.; Cole, S.; Belmans, R., Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms, IEEE Transactions on Power Systems, 27, 2, 821-829, (2012)
[10] Cao, J.; Du, W.; Wang, H. F.; Bu, S., Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks, IEEE Transactions on Power Systems, 28, 3, 3047-3055, (2013)
[11] CIGRE B4-52 Working Group, HVDC grid feasibility study, Melbourne: International Council on Large Electric Systems, (2011)
[12] Daelemans, G., VSC HVDC in meshed networks, (2008), (Ph.D. thesis) Katholieke Universiteit Leuven
[13] Daelemans, G.; Srivastava, K.; Reza, M.; Cole, S.; Belmans, R., Minimization of steady-state losses in meshed networks using VSC HVDC, Proceedings of IEEE PES general meeting, 971-975, (2009)
[14] Diamond, S.; Boyd, S., CVXPY: a python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 17, 83, 1-5, (2016) · Zbl 1360.90008
[15] Doagou-Mojarrad, H.; Rastegar, H.; Gharehpetian, G. B., Probabilistic multi-objective HVDC/AC transmission expansion planning considering distant wind/solar farms, IET Science, Measurement & Technology, 10, 2, 140-149, (2016)
[16] Dominguez, A. H.; Macedo, L. H.; Escobar, A. H.; Romero, R., Multistage security-constrained HVAC/HVDC transmission expansion planning with a reduced search space, IEEE Transactions on Power Systems, 32, 6, 4805-4817, (2017)
[17] Dominguez, A. H.; Zuluaga, A. H.E.; Macedo, L. H.; Romero, R., Transmission network expansion planning considering HVAC/HVDC lines and technical losses, Proceedings of IEEE PES transmission & distribution conference and exposition-latin america, 1-6, (2016)
[18] Ergun, H.; Dave, J.; Van Hertem, D.; Geth, F., Optimal power flow for ac/dc grids: formulation, convex relaxation, linear approximation and implementation, IEEE Transactions on Power Systems, (2019)
[19] Feng, W.; Le Tuan, A.; Tjernberg, L. B.; Mannikoff, A.; Bergman, A., A new approach for benefit evaluation of multiterminal VSC-HVDC using a proposed mixed AC/DC optimal power flow, IEEE Transactions on Power Delivery, 29, 1, 432-443, (2014)
[20] Franck, C. M., HVDC circuit breakers: A review identifying future research needs, IEEE Transactions on Power Delivery, 26, 2, 998-1007, (2011)
[21] Frank, S. M.; Rebennack, S., Optimal design of mixed AC-DC distribution systems for commercial buildings: A nonconvex generalized Benders decomposition approach, European Journal of Operational Research, 242, 3, 710-729, (2015) · Zbl 1341.90084
[22] Garver, L. L., Transmission network estimation using linear programming, IEEE Transactions on Power Apparatus and Systems, PAS-89, 7, 1688-1697, (1970)
[23] Ghaddar, B.; Jabr, R. A., Power transmission network expansion planning: A semidefinite programming branch-and-bound approach, European Journal of Operational Research, 274, 3, 837-844, (2019) · Zbl 1430.90165
[24] Ghadiri, A.; Haghifam, M. R.; Larimi, S. M.M., Comprehensive approach for hybrid AC/DC distribution network planning using genetic algorithm, IET Generation, Transmission & Distribution, 11, 16, 3892-3902, (2017)
[25] Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Kuruganty, S., The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee, IEEE Transactions on Power Systems, 14, 3, 1010-1020, (1999)
[26] Gurobi Optimization, L. (2018). Gurobi optimizer reference manual. http://www.gurobi.com.
[27] Häusler, M.; Schlayer, G.; Fitterer, G., Converting AC power lines to DC for higher transmission ratings, ABB Review, 4-11, (1997)
[28] Hemmati, R.; Hooshmand, R.-A.; Khodabakhshian, A., State-of-the-art of transmission expansion planning: Comprehensive review, Renewable and Sustainable Energy Reviews, 23, 312-319, (2013)
[29] Henderson, M.; Gagnon, J.; Bertagnolli, D.; Hosie, B.; DeShazo, G.; Silverstein, B., Building a plan for HVDC, IEEE Power and Energy Magazine, 5, 2, 52-60, (2007)
[30] Hooshmand, R.-A.; Hemmati, R.; Parastegari, M., Combination of AC transmission expansion planning and reactive power planning in the restructured power system, Energy Conversion and Management, 55, 26-35, (2012)
[31] Lazaridis, L., Economic comparison of HVAC and HVDC solutions for large offshore wind farms under special consideration of reliability, (2005), (Ph.D. thesis) KTH Royal Institute of Technology
[32] Lotfjou, A.; Fu, Y.; Shahidehpour, M., Hybrid AC/DC transmission expansion planning, IEEE Transactions on Power Delivery, 27, 3, 1620-1628, (2012)
[33] Lumbreras, S.; Ramos, A., The new challenges to transmission expansion planning. survey of recent practice and literature review, Electric Power Systems Research, 134, 19-29, (2016)
[34] McCormick, G. P., Computability of global solutions to factorable nonconvex programs: Part Iconvex underestimating problems, Mathematical Programming, 10, 1, 147-175, (1976) · Zbl 0349.90100
[35] MOSEK ApS (2017). The Mosek optimization toolbox for Matlab manual. version 8.1. http://docs.mosek.com/8.1/toolbox/index.html.
[36] Novoa, J. P.; Rios, M. A., Conversion of HVAC lines into HVDC in transmission expansion planning, World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 11, 12, 1088-1094, (2017)
[37] Rahmani, M.; Rashidinejad, M.; Carreno, E.; Romero, R., Efficient method for AC transmission network expansion planning, Electric Power Systems Research, 80, 9, 1056-1064, (2010)
[38] Rider, M.; Garcia, A.; Romero, R., Power system transmission network expansion planning using AC model, IET Generation, Transmission & Distribution, 1, 5, 731-742, (2007)
[39] Rodriguez, P.; Rouzbehi, K., Multi-terminal DC grids: challenges and prospects, Journal of Modern Power Systems and Clean Energy, 5, 4, 515-523, (2017)
[40] Schilling, S.; Kuschke, M.; Strunz, K., AC-DC optimal power flow implementation: Modeling and application to an HVDC overlay grid, Proceedings of IEEE Manchester powertech, 1-6, (2017)
[41] Taylor, J. A., Convex optimization of power systems, (2015), Cambridge University Press
[42] Taylor, J. A.; Hover, F. S., Linear relaxations for transmission system planning, IEEE Transactions on Power Systems, 26, 4, 2533-2538, (2011)
[43] Taylor, J. A.; Hover, F. S., Conic AC transmission system planning, IEEE Transactions on Power Systems, 28, 2, 952-959, (2013)
[44] Urquidez, O. A.; Xie, L., Smart targeted planning of VSC-based embedded HVDC via line shadow price weighting, IEEE Transactions on Smart Grid, 6, 1, 431-440, (2015)
[45] Van Eeckhout, B., The economic value of VSC HVDC compared to HVAC for offshore wind farms, (2008), (Ph.D. thesis) Katholieke Universiteit Leuven
[46] Van Hertem, D.; Ghandhari, M., Multi-terminal VSC HVDC for the European supergrid: obstacles, Renewable and Sustainable Energy Reviews, 14, 9, 3156-3163, (2010)
[47] Wu, Z.; Liu, P.; Gu, W.; Huang, H.; Han, J., A bi-level planning approach for hybrid AC-DC distribution system considering N-1 security criterion, Applied Energy, 230, 417-428, (2018)
[48] Yang, Z.; Zhong, H.; Bose, A.; Xia, Q.; Kang, C., Optimal power flow in AC-DC grids with discrete control devices, IEEE Transactions on Power Systems, 33, 2, 1461-1472, (2018)
[49] Zimmerman, R. D.; Murillo-Sánchez, C. E.; Thomas, R. J., Matpower: steady-state operations, planning, and analysis tools for power systems research and education, IEEE Transactions on Power Systems, 26, 1, 12-19, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.