×

zbMATH — the first resource for mathematics

Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion. (English) Zbl 07119155
Summary: Wind-turbine blade rain and sand erosion, over long periods of time, can degrade the aerodynamic performance and therefore the power production. Computational analysis of the erosion can help engineers have a better understanding of the maintenance and protection requirements. We present an integrated method for this class of computational analysis. The main components of the method are the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) stabilizations, a finite element particle-cloud tracking method, an erosion model based on two time scales, and the solid-extension mesh moving technique (SEMMT). The turbulent-flow nature of the analysis is handled with a Reynolds-averaged Navier-Stokes model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. Because the geometry update due to the erosion has a very long time scale compared to the fluid-particle dynamics, the update takes place in a sequence of “evolution steps” representing the impact of the erosion. A scale-up factor, calculated in different ways depending on the update threshold criterion, relates the erosions and particle counts in the evolution steps to those in the fluid-particle simulation. As the blade geometry evolves, the mesh is updated with the SEMMT. We present computational analysis of rain and sand erosion for a wind-turbine blade strip, including a case with actual rainfall data and experimental aerodynamic data for eroded airfoil geometries.

MSC:
74 Mechanics of deformable solids
Software:
SUPG; XFOIL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wood K (2011) Blade repair: closing the maintenance gap. Composites Technology. https://www.compositesworld.com/articles/blade-repair-closing-the-maintenance-gap
[2] 3M (2011) A 3m study is the first to show the effectsof erosion on wind turbine efficiency. www.pressebox.com/pressrelease/3m-deutschland-gmbh/a-3m-study-is-the-first-to-show-the-effects-of-erosion-on-wind-turbine-efficiency/boxid/445007
[3] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, TE; Bazilevs, Y. (ed.); Takizawa, K. (ed.), SUPG/PSPG computational analysis of rain erosion in wind-turbine blades, 77-96, (2016), Cham · Zbl 1356.76160
[4] Castorrini, A.; Corsini, A.; Rispoli, F.; Venturini, P.; Takizawa, K.; Tezduyar, TE, Computational analysis of wind-turbine blade rain erosion, Comput Fluids, 141, 175-183, (2016) · Zbl 1390.76298
[5] Corsini A, Castorrini A, Morei E, Rispoli F, Sciulli F, Venturini P (2015) Modeling of rain drop erosion in a multi-MW wind turbine. In: ASME turbo expo, Montreal
[6] Hussein, MF; Tabakoff, W., Computation and plotting of solid particle flow in rotating cascades, Comput Fluids, 2, 1-15, (1974) · Zbl 0329.76085
[7] Hamed, AA; Tabakoff, W.; Rivir, RB; Das, K.; Arora, P., Turbine blade surface deterioration by erosion, J Turbomach, 127, 445-452, (2005)
[8] Hamed A, Tabakoff W, Swar R, Shin D, Woggon N, Miller R (2013) Combined experimental and numerical simulations of thermal barrier coated turbine blades erosion. NASA report NASA/TM-2013-217857
[9] Ghenaiet, A., Numerical study of sand ingestion through a ventilating system, Proc World Congr Eng, 2, 1-3, (2009)
[10] Suzuki, M.; Yamamoto, M., Numerical simulation of sand erosion phenomena in a single-stage axial compressor, J Fluid Sci Technol, 6, 98-113, (2011)
[11] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259, (1982) · Zbl 0497.76041
[12] Tezduyar, TE, Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44, (1992) · Zbl 0747.76069
[13] Baxter, LL; Smith, PJ, Turbulent dispersion of particles: the STP model, Energy Fuels, 7, 852-859, (1993)
[14] Venturini P (2010) Modelling of particle-wall deposition in two-phase gas-solid flows. Ph.D. thesis, Sapienza University of Rome
[15] Cardillo L, Corsini A, Delibra G, Rispoli F, Sheard AG, Venturini P (2015) Simulation of particle-laden flows in a large centrifugal fan for erosion prediction. In: 58th American society of mechanical engineers turbine and aeroengine congress, Düsseldorf
[16] Kaer SK (2001) Numerical investigation of ash deposition in straw-fired furnaces. Aalborg University, Denmark Ph.D. thesis
[17] Corsini, A.; Marchegiani, A.; Rispoli, F.; Venturini, P., Predicting blade leading edge erosion in an axial induced draft fan, ASME J Eng Gas Turbines Power, 134, 042601, (1993)
[18] Tezduyar, TE; Park, YJ, Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 59, 307-325, (1986) · Zbl 0593.76096
[19] Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, TE, Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput Mech, 38, 356-364, (2006) · Zbl 1177.76192
[20] Corsini, A.; Menichini, C.; Rispoli, F.; Santoriello, A.; Tezduyar, TE, A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J Appl Mech, 76, 021211, (2009)
[21] Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, TE, A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput Mech, 46, 159-167, (2010) · Zbl 1301.76045
[22] Corsini, A.; Rispoli, F.; Tezduyar, TE, Stabilized finite element computation of NOx emission in aero-engine combustors, Int J Numer Methods Fluids, 65, 254-270, (2011) · Zbl 1426.76240
[23] Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83-0125, Reno
[24] Hughes, TJR; Tezduyar, TE, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput Methods Appl Mech Eng, 45, 217-284, (1984) · Zbl 0542.76093
[25] Tezduyar, TE; Ganjoo, DK, Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: applications to transient convection – diffusion problems, Comput Methods Appl Mech Eng, 59, 49-71, (1986) · Zbl 0604.76077
[26] Beau, GJ; Ray, SE; Aliabadi, SK; Tezduyar, TE, SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput Methods Appl Mech Eng, 104, 397-422, (1993) · Zbl 0772.76037
[27] Tezduyar, TE; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430, (2000) · Zbl 0973.76057
[28] Tezduyar, TE, Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575, (2003) · Zbl 1032.76605
[29] Tezduyar, TE; Stein, E. (ed.); Borst, RD (ed.); Hughes, TJR (ed.), Finite element methods for fluid dynamics with moving boundaries and interfaces, chapter 17, (2004), New York
[30] Tezduyar, TE, Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput Fluids, 36, 191-206, (2007) · Zbl 1177.76202
[31] Tezduyar, TE; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput Methods Appl Mech Eng, 195, 1621-1632, (2006) · Zbl 1122.76061
[32] Tezduyar, TE; Senga, M., SUPG finite element computation of inviscid supersonic flows with YZ \(\beta\) shock-capturing, Comput Fluids, 36, 147-159, (2007) · Zbl 1127.76029
[33] Tezduyar, TE; Senga, M.; Vicker, D., Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ \(\beta\) shock-capturing, Comput Mech, 38, 469-481, (2006) · Zbl 1176.76077
[34] Tezduyar, TE; Sathe, S., Enhanced-discretization selective stabilization procedure (EDSSP), Comput Mech, 38, 456-468, (2006) · Zbl 1187.76712
[35] Tezduyar, TE; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900, (2007) · Zbl 1144.74044
[36] Rispoli, F.; Corsini, A.; Tezduyar, TE, Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput Fluids, 36, 121-126, (2007) · Zbl 1181.76098
[37] Tezduyar, TE; Ramakrishnan, S.; Sathe, S., Stabilized formulations for incompressible flows with thermal coupling, Int J Numer Methods Fluids, 57, 1189-1209, (2008) · Zbl 1140.76024
[38] Rispoli, F.; Saavedra, R.; Corsini, A.; Tezduyar, TE, Computation of inviscid compressible flows with the V-SGS stabilization and YZ \(\beta\) shock-capturing, Int J Numer Methods Fluids, 54, 695-706, (2007) · Zbl 1207.76104
[39] Bazilevs, Y.; Calo, VM; Tezduyar, TE; Hughes, TJR, YZ \(\beta\) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int J Numer Methods Fluids, 54, 593-608, (2007) · Zbl 1207.76049
[40] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, TE, Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ \(\beta\) shock-capturing, J Appl Mech, 76, 021209, (2009)
[41] Hsu, M-C; Bazilevs, Y.; Calo, VM; Tezduyar, TE; Hughes, TJR, Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840, (2010) · Zbl 1406.76028
[42] Corsini, A.; Rispoli, F.; Tezduyar, TE, Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J Appl Mech, 79, 010910, (2012)
[43] Corsini, A.; Rispoli, F.; Sheard, AG; Tezduyar, TE, Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput Mech, 50, 695-705, (2012) · Zbl 1311.76121
[44] Kler, PA; Dalcin, LD; Paz, RR; Tezduyar, TE, SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput Mech, 51, 171-185, (2013) · Zbl 1312.76062
[45] Corsini, A.; Rispoli, F.; Sheard, AG; Takizawa, K.; Tezduyar, TE; Venturini, P., A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput Mech, 54, 1191-1202, (2014) · Zbl 1311.76030
[46] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, TE, Particle tracking and particle-shock interaction in compressible-flow computations with the V-SGS stabilization and YZ \(\beta\) shock-capturing, Comput Mech, 55, 1201-1209, (2015) · Zbl 1325.76121
[47] Takizawa, K.; Tezduyar, TE; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15, (2014) · Zbl 1398.76129
[48] Takizawa, K.; Tezduyar, TE; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255, (2015) · Zbl 1325.76139
[49] Takizawa, K.; Tezduyar, TE; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L.; Montel, K., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406, (2015) · Zbl 1329.76345
[50] Takizawa, K.; Tezduyar, TE; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput Mech, 62, 1169-1186, (2018) · Zbl 06981055
[51] Otoguro, Y.; Takizawa, K.; Tezduyar, TE; Nagaoka, K.; Mei, S., Turbocharger turbine and exhaust manifold flow computation with the space-time variational multiscale method and isogeometric analysis, Comput Fluids, (2018) · Zbl 1411.76070
[52] Kuraishi, T.; Takizawa, K.; Tezduyar, TE, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput Mech, (2018) · Zbl 07053716
[53] Hughes, TJR, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401, (1995) · Zbl 0866.76044
[54] Keegan, MH; Nash, D.; Stack, M., On erosion issues associated with the leading edge of wind turbine blades, J Phys D Appl Phys, 46, 383001, (2013)
[55] Springer, GS; Yang, C-I; Larsen, PS, Analysis of rain erosion of coated materials, J Compos Mater, 8, 229-252, (1974)
[56] Oka, YI; Okamura, K.; Yoshida, T., Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation, Wear, 259, 95-101, (2005)
[57] Castorrini A, Corsini A, Morabito F, Rispoli F, Venturini P (2017) Numerical simulation with adaptive boundary method for predicting time evolution of erosion processes. In: ASME turbo expo 2017: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, V02DT48A019-V02DT48A019
[58] Castorrini, A.; Venturini, P.; Corsini, A.; Rispoli, F., Numerical simulation of the blade aging process in an induced draft fan due to long time exposition to fly ash particles, J Eng Gas Turbines Power, 141, 011025, (2019)
[59] Tezduyar T (2001) Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces. In: Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas-liquid and phase-change flows (CD-ROM), ASME Paper IMECE2001/HTD-24206. ASME, New York
[60] Tezduyar, TE; Hafez, MM (ed.), Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows, 221-239, (2003), Hackensack · Zbl 1059.76038
[61] Stein, K.; Tezduyar, TE; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput Methods Appl Mech Eng, 193, 2019-2032, (2004) · Zbl 1067.74587
[62] Tezduyar, TE; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput Methods Appl Mech Eng, 195, 2002-2027, (2006) · Zbl 1118.74052
[63] Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, New York · Zbl 1286.74001
[64] Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space – time formulations, iterative strategies and massively parallel implementations. In: New methods in transient analysis, PVP-Vol.246/AMD-Vol.143. ASME, New York, pp 7-24
[65] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 27-36, (1993) · Zbl 0875.76267
[66] Johnson, AA; Tezduyar, TE, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 73-94, (1994) · Zbl 0848.76036
[67] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J Appl Mech, 70, 58-63, (2003) · Zbl 1110.74689
[68] Corsini, A.; Rispoli, F., Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure, Int J Heat Fluid Flow, 17, 108-155, (2005)
[69] Craft, TJ; Launder, BE; Suga, K., Development and application of a cubic eddy-viscosity model of turbulence, Int J Heat Fluid Flow, 17, 108-155, (1996)
[70] Lain, S.; Sommerfeld, M., Turbulence modulation in dispersed two-phase flow laden with solids from a lagrangian perspective, Int J Heat Fluid Flow, 24, 616-625, (2003)
[71] Tezduyar, TE; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid – structure interactions, Int J Numer Methods Fluids, 64, 1201-1218, (2010) · Zbl 1427.76148
[72] Takizawa, K.; Tezduyar, TE; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput Fluids, 142, 109-117, (2017) · Zbl 1390.76011
[73] Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2018) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: Proceedings of the 29th IAHR symposium on hydraulic machinery and systems, Kyoto
[74] Kanai, T.; Takizawa, K.; Tezduyar, TE; Komiya, K.; Kaneko, M.; Hirota, K.; Nohmi, M.; Tsuneda, T.; Kawai, M.; Isono, M., Methods for computation of flow-driven string dynamics in a pump and residence time, Math Models Methods Appl Sci, (2019)
[75] Baxter LL (1989) Turbulent transport of particles. Ph.D. thesis, Brigham Young University
[76] Wang LP (1990) On the dispersion of heavy particles by turbulent motion. Ph.D. thesis, Washington State University
[77] Litchford, LJ; Jeng, SM, Efficient statistical transport model for turbulent particle dispersion in sprays, AIAA J, 29, 1443-1451, (1991)
[78] Jain S (1995) Three-dimensional simulation of turbulent particle dispersion. Ph.D. thesis, University of Utah
[79] Borello, D.; Venturini, P.; Rispoli, F.; Saavedra, GZR, Prediction of multiphase combustion and ash deposition within a biomass furnace, Appl Energy, 101, 413-422, (2013)
[80] Venturini, P.; Borello, D.; Iossa, CV; Lentini, D.; Rispoli, F., Modelling of multiphase combustion and deposit formation and deposit formation in a biomass-fed boiler, Energy, 35, 3008-3021, (2010)
[81] Armenio, V.; Fiorotto, V., The importance of the forces acting on particles in turbulent flows, Phys Fluids, 13, 2437-2440, (2001) · Zbl 1184.76034
[82] Schiller, L.; Naumann, A., Uber die grundlegenden berechnungen bei der schwekraftaubereitung, Zeitschrift des Vereines Deutscher Ingenieure, 77, 318-320, (1933)
[83] Smith PJ (1991) 3-D turbulent particle dispersion submodel development. Quarterly progress report, Department of Energy, Pittsburgh Energy Technology Center
[84] Corsini, A.; Rispoli, F.; Santoriello, A., A variational multiscale high-order finite element formulation for turbomachinery flow computations, Comput Methods Appl Mech Eng, 194, 4797-4823, (2005) · Zbl 1093.76032
[85] Arjula, S.; Harsha, A.; Ghosh, M., Solid-particle erosion behavior of high-performance thermoplastic polymers, J Mater Sci, 43, 1757-1768, (2008)
[86] Tezduyar, TE; Takizawa, K.; Bazilevs, Y.; Stein, E. (ed.); Borst, RD (ed.); Hughes, TJR (ed.), Fluid-structure interaction and flows with moving boundaries and interfaces, (2017), New York
[87] Stein K, Tezduyar T (2002) Advanced mesh update techniques for problems involving large displacements. In: Proceedings of the fifth world congress on computational mechanics, Vienna (2002). Paper-ID: 81489. http://www.researchgate.net/publication/303737884/. Accessed 25 Mar 2019
[88] Sareen, A.; Sapre, CA; Selig, MS, Effects of leading edge erosion on wind turbine blade performance, Wind Energy, 17, 1531-1542, (2014)
[89] Drela M, Youngren H (2008) Xfoil subsonic airfoil development system. Software Package. http://web.mit.edu/drela/Public/web/xfoil. Retrieved Feb 2011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.