zbMATH — the first resource for mathematics

Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models. (English) Zbl 1430.62056
Summary: Bayesian analysis often concerns an evaluation of models with different dimensionality as is necessary in, for example, model selection or mixture models. To facilitate this evaluation, transdimensional Markov chain Monte Carlo (MCMC) relies on sampling a discrete indexing variable to estimate the posterior model probabilities. However, little attention has been paid to the precision of these estimates. If only few switches occur between the models in the transdimensional MCMC output, precision may be low and assessment based on the assumption of independent samples misleading. Here, we propose a new method to estimate the precision based on the observed transition matrix of the model-indexing variable. Assuming a first-order Markov model, the method samples from the posterior of the stationary distribution. This allows assessment of the uncertainty in the estimated posterior model probabilities, model ranks, and Bayes factors. Moreover, the method provides an estimate for the effective sample size of the MCMC output. In two model selection examples, we show that the proposed approach provides a good assessment of the uncertainty associated with the estimated posterior model probabilities.

62F15 Bayesian inference
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
65C40 Numerical analysis or methods applied to Markov chains
Full Text: DOI
[1] Alvares, D.; Armero, C.; Forte, A., What does objective mean in a Dirichlet-multinomial process?, Int. Stat. Rev., 86, 106-118, (2018)
[2] Anderson, TW; Goodman, LA, Statistical inference about Markov chains, Ann. Math. Stat., 28, 89-110, (1957) · Zbl 0087.14905
[3] Arnold, R.; Hayakawa, Y.; Yip, P., Capture – recapture estimation using finite mixtures of arbitrary dimension, Biometrics, 66, 644-655, (2010) · Zbl 1192.62251
[4] Barker, RJ; Link, WA, Bayesian multimodel inference by RJMCMC: a Gibbs sampling approach, Am. Stat., 67, 150-156, (2013)
[5] Brooks, SP; Giudici, P., Markov chain Monte Carlo convergence assessment via two-way analysis of variance, J. Comput. Graph. Stat., 9, 266-285, (2000)
[6] Brooks, S.; Giudici, P.; Philippe, A., Nonparametric convergence assessment for MCMC model selection, J. Comput. Graph. Stat., 12, 1-22, (2003)
[7] Brooks, SP; Giudici, P.; Roberts, GO, Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 65, 3-39, (2003) · Zbl 1063.62120
[8] Burke, CJ; Rosenblatt, M., A Markovian function of a Markov chain, Ann. Math. Stat., 29, 1112-1122, (1958) · Zbl 0100.34402
[9] Carlin, BP; Chib, S., Bayesian model choice via Markov chain Monte Carlo methods, J. R. Stat. Soc. Ser. B (Methodol.), 57, 473-484, (1995) · Zbl 0827.62027
[10] Castelloe, J.M., Zimmerman, D.L.: Convergence assessment for reversible jump MCMC samplers. Technical Report 313, Department of Statistics and Actuarial Science, University of Iowa (2002)
[11] Dellaportas, P., Forster, J.J.: Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models. Biometrika 86, 615-633 (1999). http://www.jstor.org/stable/2673658 · Zbl 0949.62050
[12] Dellaportas, P.; Forster, JJ; Ntzoufras, I.; Dey, DK (ed.); Ghosh, SK (ed.); Mallick, BK (ed.), Bayesian variable selection using the Gibbs sampler, 273-286, (2000), New York
[13] Dellaportas, P.; Forster, JJ; Ntzoufras, I., On Bayesian model and variable selection using MCMC, Stat. Comput., 12, 27-36, (2002) · Zbl 1247.62086
[14] Doss, CR; Flegal, JM; Jones, GL; Neath, RC, Markov chain Monte Carlo estimation of quantiles, Electron. J. Stat., 8, 2448-2478, (2014) · Zbl 1329.62363
[15] Eddelbuettel, D.; Sanderson, C., RcppArmadillo: accelerating R with high-performance C++ linear algebra, Comput. Stat. Data Anal., 71, 1054-1063, (2014) · Zbl 06975444
[16] Edwards, D.; Havránek, T., A fast procedure for model search in multidimensional contingency tables, Biometrika, 72, 339-351, (1985) · Zbl 0576.62067
[17] Flegal, J.M., Gong, L.: Relative fixed-width stopping rules for markov chain Monte Carlo simulations. Stat. Sin. 25, 655-675 (2015). http://www.jstor.org/stable/24311039 · Zbl 06503815
[18] Forster, JJ; Gill, RC; Overstall, AM, Reversible jump methods for generalised linear models and generalised linear mixed models, Stat. Comput., 22, 107-120, (2012) · Zbl 1322.62195
[19] Frühwirth-Schnatter, S., Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models, J. Am. Stat. Assoc., 96, 194-209, (2001) · Zbl 1015.62022
[20] Gong, L.; Flegal, JM, A practical sequential stopping rule for high-dimensional Markov Chain Monte Carlo, J. Comput. Graph. Stat., 25, 684-700, (2016)
[21] Green, PJ, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, (1995) · Zbl 0861.62023
[22] Healy, M.J.R.: GLIM: An Introduction. Claredon Press, Oxford (1988)
[23] Heck, DW; Hilbig, BE; Moshagen, M., From information processing to decisions: formalizing and comparing probabilistic choice models, Cogn. Psychol., 96, 26-40, (2017)
[24] Heck, D.W., Gronau, Q.F., Overstall, A.M., Wagenmakers, E.J.: MCMCprecision: precision of discrete variables in transdimensional MCMC (2018). https://CRAN.R-project.org/package=MCMCprecision
[25] Heidelberger, P.; Welch, PD, A spectral method for confidence interval generation and run length control in simulations, Commun. ACM, 24, 233-245, (1981)
[26] Jeffreys, H.: Theory of Probability. Oxford University Press, New York (1961) · Zbl 0116.34904
[27] Jones, GL; Haran, M.; Caffo, BS; Neath, R., Fixed-width output analysis for Markov chain Monte Carlo, J. Am. Stat. Assoc., 101, 1537-1547, (2006) · Zbl 1171.62316
[28] Karnesis, N., Bayesian model selection for LISA pathfinder, Phys. Rev. D, 89, 062001, (2014)
[29] Kass, RE; Raftery, AE, Bayes factors, J. Am. Stat. Assoc., 90, 773-795, (1995) · Zbl 0846.62028
[30] Kuo, L., Mallick, B.: Variable selection for regression models. Sankhyā Indian J. Stat. Ser. B 60, 65-81 (1998). http://www.jstor.org/stable/25053023 · Zbl 0972.62016
[31] Lodewyckx, T.; Kim, W.; Lee, MD; Tuerlinckx, F.; Kuppens, P.; Wagenmakers, EJ, A tutorial on Bayes factor estimation with the product space method, J. Math. Psychol., 55, 331-347, (2011) · Zbl 1225.62037
[32] Lopes, H.F., West, M.: Bayesian model assessment in factor analysis. Stat. Sin. 14, 41-67 (2004). http://www.jstor.org/stable/24307179 · Zbl 1035.62060
[33] Minka, T.P.: Estimating a Dirichlet distribution. Technical Report, MIT, Cambridge, MA (2000). https://tminka.github.io/papers/dirichlet/
[34] Ntzoufras, I., Gibbs variable selection using BUGS, J. Stat. Softw., 7, 1-19, (2002)
[35] Ntzoufras, I.; Dellaportas, P.; Forster, JJ, Bayesian variable and link determination for generalised linear models, J. Stat. Plan. Inference, 111, 165-180, (2003) · Zbl 1033.62026
[36] Opgen-Rhein, R.; Fahrmeir, L.; Strimmer, K., Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo, BMC Evolut. Biol., 5, 6, (2005)
[37] Overstall, A.; King, R., Conting: an R package for Bayesian analysis of complete and incomplete contingency tables, J. Stat. Softw., 58, 1-27, (2014)
[38] Overstall, AM; King, R., A default prior distribution for contingency tables with dependent factor levels, Stat. Methodol., 16, 90-99, (2014) · Zbl 07035550
[39] Plummer, M.: JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, p. 125. Vienna (2003)
[40] Plummer, M.; Best, N.; Cowles, K.; Vines, K., CODA: convergence diagnosis and output analysis for MCMC, R News, 6, 7-11, (2006)
[41] Sanderson, C.; Curtin, R., Armadillo: a template-based C++ library for linear algebra, J. Open Source Softw., 1, 26, (2016)
[42] Scott, JG; Berger, JO, Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem, Ann. Stat., 38, 2587-2619, (2010) · Zbl 1200.62020
[43] Sisson, SA, Transdimensional Markov Chains, J. Am. Stat. Assoc., 100, 1077-1089, (2005) · Zbl 1117.62428
[44] Sisson, SA; Fan, Y., A distance-based diagnostic for trans-dimensional Markov chains, Stat. Comput., 17, 357-367, (2007)
[45] Stephens, M.: Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods. Ann. Stat. 28, 40-74 (2000). http://www.jstor.org/stable/2673981 · Zbl 1106.62316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.