Some remarks on the \(u\)-invariant. (Quelques remarques sur le \(u\)-invariant.) (French) Zbl 0712.12002

The \(u\)-invariant of a field \(F\) is the supremum of dimensions of anisotropic quadratic forms over \(F\). In the beginning the author supplies some evidence supporting the following conjecture: If \(F\) is a nonreal finitely generated extension of the rationals or of a real closed field, then \(u(F)=2^{\operatorname{cd}(F)}\), where \(\operatorname{cd}(F)\) is the cohomological dimension of \(F\).
For the remaining part of the paper the author says: “Je me propose ici d’estimer \(u(F)\) en termes du groupe de Brauer de \(F\); l’énoncé précis est essentiellement une reformulation de lemmes utilisés par Merkurjev, mais j’espère qu’il présentera malgré tout un intérêt.” More specifically, let \(\operatorname{Quat} F\) be the subgroup of the Brauer group of \(F\) generated by the classes of quaternion algebras over \(F\) and let \(\lambda(F)\) be the smallest integer \(\lambda\) such that every element in \(\operatorname{Quat} F\) can be written as the sum of \(\lambda\) classes of quaternion algebras over \(F\).
Then \(u(F)\ge 2\cdot (\lambda (F)+1)\) for any field \(F\), and if \(I^3 F = 0\) and \(u(F)>1\), then \(u(F)=2\cdot (\lambda (F)+1)\). Here \(I^3 F\) is the third power of the fundamental ideal \(I F\) of the Witt ring \(WF\). Proofs are based on the results of a manuscript of A. S. Merkurjev [Simple algebras over function fields of quadrics (1989)].


11E81 Algebraic theory of quadratic forms; Witt groups and rings
12G05 Galois cohomology
11E88 Quadratic spaces; Clifford algebras
Full Text: DOI Numdam Numdam EuDML


[1] Amitsur, S.A., Rowen, L-H., Tignol, J-P., Division algebras of degree 4 and 8 with involutionIsrael J. Math.33 (1979), 133-148. · Zbl 0422.16010
[2] Serre, J-P., Cohomologie galoisienne, Lect. Notes in Math. 5. Springer, Berlin, 1965. · Zbl 0136.02801
[3] Elman, R., Lam, T.Y., On the quaternion symbol homomorphism 9F: k2F → B(F), , 447-463. Springer, New-York, 1973. · Zbl 0267.10030
[4] Elman, R., Lam, T.Y., Tignol, J-P., Wadsworth, A., Witt rings and Brauer groups under multiquadratic extensions, I, Amer. J. Math105 (1983), 1119-1170. · Zbl 0492.10014
[5] Greenberg, M., Lectures on forms in many variables. Benjamin, New York, 1969. · Zbl 0185.08304
[6] Kaplansky, I.Quadratic forms, J. Soc. Math. Japan5 (1953), 200-207. · Zbl 0051.02902
[7] Lam, T.Y., The algebraic theory of quadratic forms. Benjamin, New-York, 1980. · Zbl 0437.10006
[8] Merkurjev, A.S., Simple algebras over function fields of quadrics. preprint, 1989.
[9] Merkurjev, A.S., Suslin, A.A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR46 (1982), 1011-1046. Trad. anglaise: Math. USSR Izv.21 (1983), 307-341. · Zbl 0525.18008
[10] Racine, M.L., A simple proof of theorem of Albert, Proc. AMS43 (1974), 487-488. · Zbl 0285.16013
[11] Tignol, J-P., Sur les classes de similitude de corps à involution de degré 8, C.R. Acad. Sci. Paris286. · Zbl 0374.16006
[12] Tignol, J-P., Réduction de l’indice d’une algébre simple sur le corps des fonctions d’une quadrique. preprint, 1989.
[13] Tignol, J-P., On the length of decompositions of central simple algebras in tensor products of symbols, in Methods of ring theory, NATO ASI Series, Ser. C 129, 505-516. Reidel, Dordrecht, 1984. · Zbl 0558.16010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.