zbMATH — the first resource for mathematics

Lifting measures to Markov extensions. (English) Zbl 0712.28008
Generalizing a theorem of F. Hofbauer [Isr. J. Math. 34, 213-237 (1979; Zbl 0422.28015)] we give conditions under which invariant measures for piecewise invertible dynamical systems can be lifted to Markov extensions. In contrast to Hofbauer’s proof we do not use coding techniques to construct a pointwise near-isomorphism between the inverse limits of the dynamical system and its Markov extension. Instead we use rather straightforward entropy arguments proving that an ergodic invariant measure of the original system can be lifted to an invariant measure of the extension provided its entropy is greater than the “topological entropy at infinity” of the extension. In the special case of twice continuously differentiable, piecewise monotone interval maps with nondegenerate critical points it is proved that each nonatomic ergodic invariant measure with positive Lyapunov exponent can be lifted to the canonical Markov extension.
Reviewer: G.Keller

28D05 Measure-preserving transformations
28D20 Entropy and other invariants
37A99 Ergodic theory
PDF BibTeX Cite
Full Text: DOI EuDML
[1] Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc.184, 125-136 (1973). · Zbl 0274.54030
[2] Collet, P., Eckmann, J. P.: Iterated Maps on the Interval as Dynamical Systems. Boston: Birkhäuser. 1980. · Zbl 0458.58002
[3] Denker, M., Keller, G., Urbànski, M.: On the uniqueness of equilibrium states for piecewise monotone mappings. Preprint Univ. Heidelberg. 1988.
[4] Guckenheimer, J.: Sensitive dependence to initial conditions for one dimensional maps. Comm. Math. Phys.70, 133-160 (1979). · Zbl 0429.58012
[5] Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Israel J. Math.34, 213-237 (1979). · Zbl 0422.28015
[6] Hofbauer, F.: The topological entropy of the transformationx?ax(1?x). Mh. Math.90, 117-141 (1980). · Zbl 0433.54009
[7] Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, part II. Israel J. Math.38, 107-115 (1981). · Zbl 0456.28006
[8] Hofbauer, F.: Piecewise invertible dynamical systems. Probability Theory Rel Fields72, 359-386 (1986). · Zbl 0591.60064
[9] Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z.180, 119-140 (1982). · Zbl 0485.28016
[10] Johnson, S. D.: Continuous measures and strange attractors in one dimension. Ph. D. Thesis Stanford (1985).
[11] Keller, G.: Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems. Preprint Univ. Heidelberg. To appear in Trans. Amer. Math. Soc. (1989). · Zbl 0686.58027
[12] Ledrappier, F.: Some properties of absolutely continuous invariant measures on an interval. Ergodic Theory and Dynamical Systems1, 77-93 (1981). · Zbl 0487.28015
[13] Ledrappier, F., Misiurewicz, M.: Dimension of invariant measures for maps with exponent zero. Ergodic Theory and Dynamical Systems5, 595-610 (1985). · Zbl 0608.28008
[14] Misiurewicz, M.: Structure of mappings of an interval with zero entropy. Publ. Math. I.H.E.S.53, 5-16 (1981a). · Zbl 0477.58030
[15] Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Publ. Math. I.H.E.S.53, 17-52 (1981b). · Zbl 0477.58020
[16] Nowicki, T.: On some dynamical properties ofS-unimodal maps on an interval. Fundamenta Math.126, 27-43 (1985). · Zbl 0608.58030
[17] Oxtoby, J. C.: Ergodic sets. Bull. Amer. Math. Soc.58, 116-136 (1952). · Zbl 0046.11504
[18] Petersen, K.: Chains, entropy, coding. Ergodic Theory and Dynamical Systems6, 415-448 (1986). · Zbl 0596.28020
[19] Preston, Ch.: Iterates of Maps on an Interval. Lect. Notes Math. 999, Berlin-Heidelberg-New York-Tokyo: Springer (1983). · Zbl 0582.58001
[20] Salama, J. A.: Topological entropy and classification of countable chains. Ph. D. Thesis, Chapel Hill (1984).
[21] Wagoner, J. B.: Topological Markov chains,C *-algebras andK 2. Adv. in Math.71, 133-185 (1988). · Zbl 0664.46068
[22] Walters, P.: Equilibrium states for ?-transformations and related transformations. Math. Z.159, 65-88 (1978). · Zbl 0364.28016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.