×

On the base and the essential base in parabolic potential theory. (English) Zbl 0712.31001

This paper is concerned with notions of thinness for the heat equation. In section 1 several Wiener-type criteria (involving thermal outer capacity) are given for an arbitrary set in \({\mathbb{R}}^{n+1}\) to be non- thin at a point z. Section 2 deals with semi-polar sets: a set E is said to be semi-polar at z if there exists a fine neighbourhood V of z such that \(E\cap V\) is the countable union of everywhere thin sets. Several Wiener-type criteria are given for a Borel set E to be non-semi-polar at z. These now involve “continuous thermal capacity”, which, for a compact set K, is defined by \(\alpha (K)=\sup \{\mu ({\mathbb{R}}^{n+1})\}:\) here the supremum is over all non-negative Radon measures \(\mu\) with support in K such that the heat potential, \(P\mu\), of \(\mu\) is continuous on \({\mathbb{R}}^{n+1}\) and satisfies \(P\mu\leq 1\) everywhere. Finally, section 3 gives an application to the Choquet boundary.
Reviewer: S.J.Gardiner

MSC:

31B15 Potentials and capacities, extremal length and related notions in higher dimensions
35K05 Heat equation
31B35 Connections of harmonic functions with differential equations in higher dimensions

References:

[1] G. Anger: Funktionalanalytische Betrachtungen bei Differentialgleichungen unter Verwendung von Methoden der Potentialtheorie I. Akademie-Verlag, Berlin, 1967. · Zbl 0163.11901
[2] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics 22, Springer-Verlag, Berlin, 1966. · Zbl 0142.38402 · doi:10.1007/BFb0075360
[3] U. Bauermann: Balayage-Operatoren in der Potentialtheorie. Math. Ann. 231 (1977), 181-186. · Zbl 0351.31011 · doi:10.1007/BF01361140
[4] J. Bliedtner W. Hansen: Simplicial cones in potential theory. Invent. Math. 29 (1975), 83-110. · Zbl 0308.31011 · doi:10.1007/BF01390188
[5] J. Bliedtner W. Hansen: Potential theory, An Analytic and Probabilistic Approach to Balayage. Springer-Verlag, Berlin, 1986. · Zbl 0706.31001
[6] M. Brelot: Sur les ensembles effilés. Bull. Sci. Math. 68 (1944), 12-36. · Zbl 0028.36201
[7] M. Brelot: Éléments de la theorie classique du potential. 2e Centre de Documentation Universitaire Paris, 1961.
[8] M. Brzezina: Thinness and essential base for the heat equation. (Thesis in Czech) Charles University, Prague, 1986.
[9] M. Brzezina: Base and essential base in parabolic potential theory. Comm. Math. Univ. Carolinae 27 (1986), 631-632.
[10] C. Constantinescu A. Cornea: Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972. · Zbl 0248.31011
[11] E. G. Effros L. J. Kazdan: On the Dirichlet problem for the heat equation. Indiana Univ. Math. J. 20 (1971), 683-693. · Zbl 0216.12702 · doi:10.1512/iumj.1971.20.20054
[12] C. L. Evans F. R. Gariepy: Wiener’s criterion for the heat equation. Arch. Rational Mech. Anal. 78 (1982), 293-314. · Zbl 0508.35038 · doi:10.1007/BF00249583
[13] N. Garofalo E. Lanconelli: Wiener’s criterion for parabolic equation with variable coefficient and its consequences. Trans. Amer. Math. Soc. · Zbl 0698.31007 · doi:10.2307/2001104
[14] W. Hansen: Fegen und Dünheit mit Anwendungen auf die Laplace- und Wärmeleitungs- gleichungen. Ann. Inst. Fourier (Grenoble) 21 (1971), 79-121. · Zbl 0202.14301 · doi:10.5802/aif.363
[15] W. Hansen: Semi-polar sets are almost negligible. J. reine angew. Math. 314 (1980), 217-220. · Zbl 0422.31009 · doi:10.1515/crll.1980.314.217
[16] W. Hansen: Semi-polar sets and quasi-balayage. Math. Ann. 257 (1981), 495-517. · Zbl 0458.31008 · doi:10.1007/BF01465870
[17] E. Lanconelli: Sul problema di Dirichlet per l’equazione del calore. Ann. Math. Pura ed Appl. 97(1973), 83-113. · Zbl 0277.35058 · doi:10.1007/BF02414910
[18] I. Netuka: Thinness and the heat equation. Časopis Pěst. Mat. 99 (1974), 293-299. · Zbl 0289.35037
[19] I. Netuka J. Veselý: Harmonic continuation and removable singularities in the axiomatic potential theory. Math. Ann. 234 (1978), 117-123. · Zbl 0358.31007 · doi:10.1007/BF01420962
[20] C. J. Oxtoby: Measure and category. Springer-Verlag, Berlin, 1971. · Zbl 0217.09201
[21] G. I. Petrowsky: Zur ersten Randwertaufgabe der Wärmeleitungsgleichung. Compositio Math. 7 (1935), 383 - 419. · Zbl 0010.29903
[22] B. Pini: Sulla regolarità e irregolarita della frontiera per il primo problema di valori al contorno relativo all’equazione del calore. Ann. Math. Pura ed Appl. 40 (1955), 69-88. · Zbl 0066.07804 · doi:10.1007/BF02416523
[23] V. Sternberg: Über die Gleichung der Wärmeleitung. Math. Ann. 101 (1929), 394-398. · JFM 55.0290.14 · doi:10.1007/BF01454850
[24] L. Stocia: On the thinness of a set at a point. Stud. Cerc. Mat. 38 (1986), 382-391. · Zbl 0643.60058
[25] K. Uchiyama: A probabilistic proof and applications of Wiener’s test for the heat operator. · Zbl 0678.60066 · doi:10.1007/BF01457502
[26] A. N. Watson: Thermal capacity. Proc. London Math. Soc. (3) 37 (1978), 342-362. · Zbl 0395.35034 · doi:10.1112/plms/s3-37.2.342
[27] A. N. Watson: Thinness and boundary behaviour of potentials for the heat equation. Mathematika 32 (1985), 90-95. · Zbl 0581.31005 · doi:10.1112/S0025579300010901
[28] A. N. Watson: Green’s functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc. (3) 33 (1976), 251-298. · Zbl 0336.35046
[29] N. Wiener: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146. · JFM 51.0361.01 · doi:10.1002/sapm192433127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.