Lindblad, Hans Blow-up for solutions of \(\square u=| u| ^ p\) with small initial data. (English) Zbl 0712.35018 Commun. Partial Differ. Equations 15, No. 6, 757-821 (1990). The author proves precise asymptotic estimates on the lifespan \(T_{\epsilon}\) for solutions of the Cauchy problem \[ \square u(t,x)=u(t,x)^ 2,\quad u(0,x)=\epsilon f(x),\quad \partial_ tu(0,x)=\epsilon g(x), \] where \(f\in C^ 3_ 0({\mathbb{R}}^ 3)\), \(g\in C^ 2_ 0({\mathbb{R}}^ 3)\), \(\square =\partial_ t^ 2- \sum^{3}_{i=1}\partial^ 2_{x_ i}\). Reviewer: S.G.Krantz Cited in 1 ReviewCited in 42 Documents MSC: 35B40 Asymptotic behavior of solutions to PDEs 35L70 Second-order nonlinear hyperbolic equations Keywords:lifespan; Cauchy problem PDF BibTeX XML Cite \textit{H. Lindblad}, Commun. Partial Differ. Equations 15, No. 6, 757--821 (1990; Zbl 0712.35018) Full Text: DOI OpenURL References: [1] DOI: 10.1090/S0002-9947-1986-0849476-3 [2] Caffarelli L., Arch. Rational Mech. Anal. 91 pp 83– · Zbl 0593.35055 [3] DOI: 10.1098/rspa.1962.0162 · Zbl 0106.41501 [4] DOI: 10.1098/rspa.1964.0111 · Zbl 0117.43904 [5] DOI: 10.1007/BF01162066 · Zbl 0438.35045 [6] DOI: 10.1007/BF01262042 · Zbl 0451.35039 [7] DOI: 10.1007/BFb0077745 [8] DOI: 10.1007/BF01647974 · Zbl 0406.35042 [9] DOI: 10.1002/cpa.3160400104 · Zbl 0662.35070 [10] DOI: 10.1002/cpa.3160330403 · Zbl 0421.35053 [11] DOI: 10.1002/cpa.3160100404 · Zbl 0090.31802 [12] DOI: 10.1002/cpa.3160380305 · Zbl 0635.35059 [13] DOI: 10.1002/cpa.3160330104 · Zbl 0405.35056 [14] Schaeffer, Proc. Roy .Soc. Edinburgh pp 31– (1985) · Zbl 0592.35080 [15] DOI: 10.1016/0022-0396(84)90169-4 · Zbl 0555.35091 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.