zbMATH — the first resource for mathematics

Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables. (The Jacobians of spectral curves and completely integrable Hamiltonian systems). (French) Zbl 0712.58031
The author gives a geometric interpretation of the Mumford construction for the hyperelliptic Jacobians. This enables him to point out some new integrable Hamiltonian mechanical systems.
Reviewer: M.Puta

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI
[1] Artin, M., On Azumaya algebras and finite-dimensional representations of rings.J. Algebra, 11 (1969), 532–563. · Zbl 0222.16007
[2] Adler, M. &van Moerbeke, P., Completely integrable systems, Euclidean Lie algebras and curves; linearization of Hamiltonian systems, Jacobi varieties and representation theory.Adv. in Math., 38 (1980), 267–379. · Zbl 0455.58017
[3] Beauville, A., Narasimhan, M. S. &Ramanan, S., Spectral curves and generalised theta divisor.J. Reine Angew. Math., 398 (1989), 169–179. · Zbl 0666.14015
[4] Formanek, E., The center of the ring of 3{\(\times\)}3 generic matrices.Linear and Multilinear Algebra, 7 (1979), 203–212. · Zbl 0419.16010
[5] –, The center of the ring of 4{\(\times\)}4 generic matrices.J. Algebra, 62 (1980), 304–319. · Zbl 0437.16013
[6] Kempf, G., The equations defining a curve of genus 4.Proc. Amer. Math. Soc., 97 (1986), 214–225. · Zbl 0595.14021
[7] Le Bruyn, L., Some remarks on rational matrix invariants.J. Algebra, 118 (1988), 487–493. · Zbl 0668.14032
[8] Maruyama, M., The equations of plane curves and the moduli space of vector bundles onP 2.Algebraic and Topological Theory (to the memory of T. Miyata), 430–466 (1985).
[9] Mumford, D. &Fogarty, J.,Geometric Invariant Theory. 2nd edition Ergebnisse der Math. 34, Springer Verlag, Berlin-Heidelberg-New York (1982). · Zbl 0504.14008
[10] Mumford, D.,Tata lectures on Theta II. Progress in Math. 43. Birkhäuser, Boston-Basel-Stuttgart (1984). · Zbl 0549.14014
[11] Weinstein, A., The local structure of Poisson manifolds.J. Differential Geom., 18 (1983), 523–557. · Zbl 0524.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.