Bandt, Christoph Self-similar sets. III: Constructions with sofic systems. (English) Zbl 0712.58039 Monatsh. Math. 108, No. 2-3, 89-102 (1989). Summary: [For part I see the author, Math. Nachr. 142, 107-123 (1989; Zbl 0707.28004), for part IV see Proc. Conf. Topology and Measure V, Greifswald, 8-16 (1988).] Using sofic systems, modifications of the self-similar sets of Hutchinson are defined as solutions of systems of fixed-point equations. Their Hausdorff dimension is determined. Cited in 5 ReviewsCited in 16 Documents MSC: 37A99 Ergodic theory 28D05 Measure-preserving transformations 37E99 Low-dimensional dynamical systems Keywords:symbolic dynamics; similarity-invariant measure; sofic systems; fixed- point equations; Hausdorff dimension Citations:Zbl 0707.28004 PDF BibTeX XML Cite \textit{C. Bandt}, Monatsh. Math. 108, No. 2--3, 89--102 (1989; Zbl 0712.58039) Full Text: DOI EuDML References: [1] Bandt, C.: Self-similar sets 1. Markov shifts and mixed self-similar sets. Math. Nachr.142, 107-123 (1989). · Zbl 0707.28004 [2] Bandt, C.: Self-similar sets 4. Topology and measures. Proc. Conf. Topology and Measure V (Binz, GDR, 1987), pp. 8-16, Greifswald 1988. · Zbl 0779.54022 [3] Barnsley, M. F., Demko, S.: Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London A399, 243-275 (1985). · Zbl 0588.28002 [4] Barnsley, M. F., Elton, J. H.: A new class of Markov processes for image encoding. Adv. Appl. Prob.20, 14-32 (1988). · Zbl 0643.60050 [5] Bedford, T.: Dimension and dynamics for fractal recurrent sets. J. London Math. Soc. (2)33, 89-100 (1986). · Zbl 0606.28004 [6] Dekking, F. M.: Recurrent sets. Adv. in Math.44, 78-104 (1982). · Zbl 0495.51017 [7] Elton, J. H.: An ergodic theorem for iterated maps. Ergodic Theory Dynam. Sys.7, 481-488 (1987). · Zbl 0621.60039 [8] Falconer, K. J.: The Geometry of Fractal Sets. Cambridge: University Press. 1985. · Zbl 0587.28004 [9] Feiste, U.: A generalization of mixed invariant sets. Matematika35, 198-206 (1988). · Zbl 0707.28005 [10] Fischer, R.: Sofic systems and graphs. Mh. Math.80, 179-186 (1975). · Zbl 0314.54043 [11] Gilbert, W. J.: Complex bases and fractal similarity. Annales des Sciences Mathématiques du Québec11, 65-77 (1987). · Zbl 0633.10008 [12] Graf, S.: Statistically self-similar fractals. Probab. Theory Rel. Fields74, 357-392 (1987). · Zbl 0591.60005 [13] Hata, M.: On some properties of set-dynamical systems. Japan Acad.61, Ser. A, 99-102 (1985). · Zbl 0573.54033 [14] Hayashi, S.: Self-similar sets as Tarski’s fixed points. Publ. Res. Inst. Math. Sci. Kyoto Univ.21, 1059-1066 (1985). · Zbl 0618.54030 [15] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J.30, 713-747 (1981). · Zbl 0598.28011 [16] Kamae, T.: A characterization of self-affine functions. Japan J. Appl. Math.3, 271-280 (1986). · Zbl 0646.28005 [17] Mandelbrot, B. B.: The Fractal Geometry of Nature. San Francisco: Freeman. 1982. · Zbl 0504.28001 [18] Marion, J.: Mesures de Hausdorff et théorie de Perron-Frobenius des matrices non-negatives. Ann. Inst. Fourier Grenoble354, 99-125 (1985). · Zbl 0564.28002 [19] Mauldin, R. D., Williams, S. C.: Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc.304, 811-823 (1988). · Zbl 0706.28007 [20] Moran, P. A. P.: Additive funcions of intervals and Hausdorff measures. Proc. Cambridge Philos. Soc.42, 15-23 (1946). · Zbl 0063.04088 [21] Oppenheimer, P.: Real time design and animation of fractal plants and trees. Computer graphics20, 55-64 (1986). [22] Prusinkiewicz, P.: Graphical applications of L-systems. Proc. of Graphics Interface ’86-Vision Interface ’86, 247-253 (1986). [23] Schultz, M.: Hausdorff-Dimension von Cantormengen mit Anwendungen auf Attraktoren. Humboldt-Univ. Berlin: Dissertation. 1986. [24] Weiss, B.: Subshifts of finite type and sofic systems. Mh. Math.77, 462-474 (1973). · Zbl 0285.28021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.