zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convergence properties of Hildreth’s quadratic programming algorithm. (English) Zbl 0712.90054
The linear convergence rate of Hildreth’s algorithm with an almost cyclic control for convex quadratic programming problems is proved. The proof is carried out for both its sequential and simultaneous version. Bounds on the convergence rate are derived. The results are compared with those obtained previously by {\it J. Mandel} [Math. Program. 30, 218-228 (1984; Zbl 0545.90068)].
Reviewer: K.Zimmermann

90C20Quadratic programming
65K05Mathematical programming (numerical methods)
90C25Convex programming
90-08Computational methods (optimization)
Full Text: DOI
[1] S. Agmon, ”The relaxation method for linear inequalities,”Canadian Journal of Mathematics 6 (1954) 382--392. · Zbl 0055.35001 · doi:10.4153/CJM-1954-037-2
[2] Y. Censor, ”Row-action methods for huge and sparse systems and their applications,”SIAM Review 23 (1981) 444--466. · Zbl 0469.65037 · doi:10.1137/1023097
[3] Y. Censor and G.T. Herman, ”Row generation methods for feasibility and optimization problems involving sparse matrices and their applications,” in: I.S. Duff and G.W. Stewart, eds.,Sparse Matrix Proceedings 1978 (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979) pp. 197--219.
[4] J.L. Goffin, ”The relaxation method for solving systems of linear inequalities,”Mathematics of Operations Research 5 (1980) 388--414. · Zbl 0442.90051 · doi:10.1287/moor.5.3.388
[5] R. Gordon and G.T. Herman, ”Three-dimensional reconstruction from projections: A review of algorithms,”International Review of Cytology 38 (1974) 111--151. · doi:10.1016/S0074-7696(08)60925-0
[6] G.T. Herman and A. Lent, ”Iterative reconstruction algorithms,”Computers in Biology and Medicine 6 (1976) 273--294. · doi:10.1016/0010-4825(76)90066-4
[7] G.T. Herman and A. Lent, ”A family of iterative quadratic optimization algorithms for pairs of inequalities with applications in diagnostic radiology,”Mathematical Programming Study 9 (1978) 15--29. · Zbl 0389.90078
[8] C. Hildreth, ”A quadratic programming procedure,”Naval Research Logistics Quarterly 4 (1957) 79--85. [Erratum,ibid., p. 361.] · doi:10.1002/nav.3800040113
[9] A.N. Iusem and A.R. De Pierro, ”A simultaneous iterative method for computing projections on polyhedra,”SIAM Journal on Control 25 (1986) 231--243. · Zbl 0621.90061 · doi:10.1137/0325014
[10] S. Kaczmarz, ”Angenäherte Auflösung von Systemen linearer Gleichungen,”Bulletin International de l’Academie Polonaise de Sciences et Lettres A35 (1937) 355--357. · Zbl 0017.31703
[11] A. Lent and Y. Censor, ”Extensions of Hildreth’s row-action method for quadratic programming,”SIAM Journal on Control 18 (1980) 444--454. · Zbl 0444.49025 · doi:10.1137/0318033
[12] J. Mandel, ”Convergence of the cyclical relaxation method for linear inequalities,”Mathematical Programming 30 (1984) 218--228. · Zbl 0545.90068 · doi:10.1007/BF02591886
[13] O.L. Mangasarian, ”Solution of symmetric linear complementarity problems by iterative methods,”Journal of Optimization Theory and Applications 22 (1977) 465--485. · Zbl 0341.65049 · doi:10.1007/BF01268170
[14] T.H. Motzkin and I.J. Schoenberg, ”The relaxation method for linear inequalities,”Canadian Journal of Mathematics 6 (1954) 393--404. · Zbl 0055.35002 · doi:10.4153/CJM-1954-038-x
[15] J.S. Pang, ”More results on the convergence of iterative methods for the symmetric linear complementarity problem,”Journal of Optimization Theory and Applications 49 (1986) 107--134. · Zbl 0568.90096 · doi:10.1007/BF00939250