A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources. (English) Zbl 1466.60054

Summary: This work is devoted to the study of scaling limits in small mutations and large time of the solutions \(u^{\varepsilon}\) of two deterministic models of phenotypic adaptation, where the parameter \(\varepsilon>0\) scales the size or frequency of mutations. The second model is the so-called Lotka-Volterra parabolic PDE in \(\mathbb{R}^d\) with an arbitrary number of resources and the first one is a version of the second model with finite phenotype space. The solutions of such systems typically concentrate as Dirac masses in the limit \(\varepsilon \rightarrow 0\). Our main results are, in both cases, the representation of the limits of \(\varepsilon\log u^{\varepsilon}\) as solutions of variational problems and regularity results for these limits. The method mainly relies on Feynman-Kac-type representations of \(u^{\varepsilon}\) and Varadhan’s lemma. Our probabilistic approach applies to multiresources situations not covered by standard analytical methods and makes the link between variational limit problems and Hamilton-Jacobi equations with irregular Hamiltonians that arise naturally from analytical methods. The finite case presents substantial difficulties since the rate function of the associated large deviation principle (LDP) has noncompact level sets. In that case, we are also able to obtain uniqueness of the solution of the variational problem and of the associated differential problem which can be interpreted as a Hamilton-Jacobi equation in finite state space.


60F10 Large deviations
35K57 Reaction-diffusion equations
49L20 Dynamic programming in optimal control and differential games
92D15 Problems related to evolution
35B25 Singular perturbations in context of PDEs
47G20 Integro-differential operators
Full Text: DOI arXiv Euclid


[1] Bardi, M. and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. · Zbl 0890.49011
[2] Barles, G., Evans, L. C. and Souganidis, P. E. (1990). Wavefront propagation for reaction-diffusion systems of PDE. Duke Math. J.61 835-858. · Zbl 0749.35015 · doi:10.1215/S0012-7094-90-06132-0
[3] Barles, G., Mirrahimi, S. and Perthame, B. (2009). Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result. Methods Appl. Anal.16 321-340. · Zbl 1204.35027 · doi:10.4310/MAA.2009.v16.n3.a4
[4] Barles, G. and Perthame, B. (2007). Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In Recent Developments in Nonlinear Partial Differential Equations. Contemp. Math.439 57-68. Amer. Math. Soc., Providence, RI. · Zbl 1137.49027
[5] Billingsley, P. (1971). Weak Convergence of Measures: Applications in Probability. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics5. SIAM, Philadelphia, PA. · Zbl 0271.60009
[6] Bogachev, V. I. (2007). Measure Theory. Vol. I, II. Springer, Berlin. · Zbl 1120.28001
[7] Catoni, O. and Cerf, R. (1995/97). The exit path of a Markov chain with rare transitions. ESAIM Probab. Stat.1 95-144. · Zbl 0869.60063 · doi:10.1051/ps:1997105
[8] Champagnat, N. and Jabin, P.-E. (2011). The evolutionary limit for models of populations interacting competitively via several resources. J. Differential Equations251 176-195. · Zbl 1227.35040 · doi:10.1016/j.jde.2011.03.007
[9] Champagnat, N., Jabin, P.-E. and Méléard, S. (2014). Adaptation in a stochastic multi-resources chemostat model. J. Math. Pures Appl. (9) 101 755-788. · Zbl 1322.92052 · doi:10.1016/j.matpur.2013.10.003
[10] Champagnat, N., Jabin, P.-E. and Raoul, G. (2010). Convergence to equilibrium in competitive Lotka-Volterra and chemostat systems. C. R. Math. Acad. Sci. Paris348 1267-1272. · Zbl 1213.34066 · doi:10.1016/j.crma.2010.11.001
[11] Cirillo, E. N. M., Nardi, F. R. and Sohier, J. (2015). Metastability for general dynamics with rare transitions: Escape time and critical configurations. J. Stat. Phys.161 365-403. · Zbl 1327.82058 · doi:10.1007/s10955-015-1334-6
[12] Clarke, F. (2013). Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics264. Springer, London. · Zbl 1277.49001
[13] Demazure, M. (2000). Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems. Universitext. Springer, Berlin. Translated from the 1989 French original by David Chillingworth. · Zbl 0959.37002
[14] Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett, Boston, MA. · Zbl 0793.60030
[15] Desvillettes, L., Jabin, P.-E., Mischler, S. and Raoul, G. (2008). On selection dynamics for continuous structured populations. Commun. Math. Sci.6 729-747. · Zbl 1176.45009 · doi:10.4310/CMS.2008.v6.n3.a10
[16] Dieckmann, U. and Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature400 354-357.
[17] Diekmann, O., Jabin, P.-E., Mischler, S. and Perthame, B. (2005). The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol.67 257-271. · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[18] Engel, K.-J. and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics194. Springer, New York. · Zbl 0952.47036
[19] Feng, J. and Kurtz, T. G. (2006). Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs131. Amer. Math. Soc., Providence, RI.
[20] Fleming, W. H. and Soner, H. M. (1993). Controlled Markov Processes and Viscosity Solutions. Applications of Mathematics (New York) 25. Springer, New York. · Zbl 0773.60070
[21] Fleming, W. H. and Souganidis, P. E. (1986). PDE-viscosity solution approach to some problems of large deviations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 13 171-192. · Zbl 0622.60032
[22] Freidlin, M. (1985). Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab.13 639-675. · Zbl 0576.60070 · doi:10.1214/aop/1176992901
[23] Freidlin, M. I. (1987). Tunneling soliton in the equations of reaction-diffusion type. In Reports from the Moscow Refusnik Seminar. Ann. New York Acad. Sci.491 149-156. New York Acad. Sci., New York. · Zbl 0726.35008
[24] Freidlin, M. I. (1992). Semi-linear PDEs and limit theorems for large deviations. In École D’Été de Probabilités de Saint-Flour XX—1990. Lecture Notes in Math.1527 1-109. Springer, Berlin. · Zbl 0777.60025
[25] Jabin, P.-E. and Raoul, G. (2011). On selection dynamics for competitive interactions. J. Math. Biol.63 493-517. · Zbl 1230.92038 · doi:10.1007/s00285-010-0370-8
[26] Kraut, A. and Bovier, A. (2018). From adaptive dynamics to adaptive walks. Available at arXiv:1810.13188. · Zbl 1430.37111
[27] Lions, P.-L. (1982). Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics69. Pitman, Boston, MA.
[28] Lions, P.-L. and Perthame, B. (1987). Remarks on Hamilton-Jacobi equations with measurable time-dependent Hamiltonians. Nonlinear Anal.11 613-621. · Zbl 0688.35052 · doi:10.1016/0362-546X(87)90076-9
[29] Lorz, A., Mirrahimi, S. and Perthame, B. (2011). Dirac mass dynamics in multidimensional nonlocal parabolic equations. Comm. Partial Differential Equations36 1071-1098. · Zbl 1229.35113 · doi:10.1080/03605302.2010.538784
[30] Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications16. Birkhäuser, Basel. · Zbl 0816.35001
[31] Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A. and van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and Spatial Structures of Dynamical Systems (Amsterdam, 1995). Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks45 183-231. North-Holland, Amsterdam. · Zbl 0972.92024
[32] Mirrahimi, S., Perthame, B. and Wakano, J. Y. (2012). Evolution of species trait through resource competition. J. Math. Biol.64 1189-1223. · Zbl 1279.92060 · doi:10.1007/s00285-011-0447-z
[33] Mirrahimi, S. and Roquejoffre, J.-M. (2015). Uniqueness in a class of Hamilton-Jacobi equations with constraints. C. R. Math. Acad. Sci. Paris353 489-494. · Zbl 1343.35064 · doi:10.1016/j.crma.2015.03.005
[34] Mirrahimi, S. and Roquejoffre, J.-M. (2016). A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach. J. Differential Equations260 4717-4738. · Zbl 1342.35066 · doi:10.1016/j.jde.2015.11.027
[35] Perthame, B. (2015). Parabolic Equations in Biology: Growth, Reaction, Movement and Diffusion. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. · Zbl 1333.35001
[36] Perthame, B. and Barles, G. (2008). Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J.57 3275-3301. · Zbl 1172.35005 · doi:10.1512/iumj.2008.57.3398
[37] Perthame, B. and Génieys, S. (2007). Concentration in the nonlocal Fisher equation: The Hamilton-Jacobi limit. Math. Model. Nat. Phenom.2 135-151. · Zbl 1337.35077
[38] Raoul, G. (2011). Long time evolution of populations under selection and vanishing mutations. Acta Appl. Math.114 1-14. · Zbl 1213.35112 · doi:10.1007/s10440-011-9603-0
[39] Vinter, R. B. and Wolenski, P. (1990). Hamilton-Jacobi theory for optimal control problems with data measurable in time. SIAM J. Control Optim.28 1404-1419. · Zbl 0721.49029 · doi:10.1137/0328073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.