×

A version of Aldous’ spectral-gap conjecture for the zero range process. (English) Zbl 1466.60208

Summary: We show that the spectral gap of a general zero range process can be controlled in terms of the spectral gap for a single particle. This is in the spirit of Aldous’ famous spectral-gap conjecture for the interchange process, now resolved by Caputo et al. Our main inequality decouples the role of the geometry (defined by the jump matrix) from that of the kinetics (specified by the exit rates). Among other consequences, the various spectral gap estimates that were so far only available on the complete graph or the \(d\)-dimensional torus now extend effortlessly to arbitrary geometries. As an illustration, we determine the exact order of magnitude of the spectral gap of the rate-one zero-range process on any regular graph and, more generally, for any doubly stochastic jump matrix.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Aldous, D. and Fill, J. (2002). Reversible Markov chains and random walks on graphs. Unfinished manuscript. Available at http://www.stat.berkeley.edu/ aldous/RWG/book.html.
[2] Alon, G. and Kozma, G. (2018). Comparing with octopi. Preprint. Available at arXiv:1811.10537.
[3] Boudou, A.-S., Caputo, P., Dai Pra, P. and Posta, G. (2006). Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal.232 222-258. · Zbl 1087.60071
[4] Caputo, P. (2004). Spectral gap inequalities in product spaces with conservation laws. In Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math.39 53-88. Math. Soc. Japan, Tokyo. · Zbl 1072.82001
[5] Caputo, P., Liggett, T. M. and Richthammer, T. (2010). Proof of Aldous’ spectral gap conjecture. J. Amer. Math. Soc.23 831-851. · Zbl 1203.60145
[6] Caputo, P. and Posta, G. (2007). Entropy dissipation estimates in a zero-range dynamics. Probab. Theory Related Fields139 65-87. · Zbl 1126.60082
[7] Dai Pra, P. and Posta, G. (2005). Logarithmic Sobolev inequality for zero-range dynamics. Ann. Probab.33 2355-2401. · Zbl 1099.60068
[8] Diaconis, P. and Saloff-Coste, L. (1993). Comparison theorems for reversible Markov chains. Ann. Appl. Probab.3 696-730. · Zbl 0799.60058
[9] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete57 159-179. · Zbl 0485.60006
[10] Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab.1 36-61. · Zbl 0731.60061
[11] Janvresse, E., Landim, C., Quastel, J. and Yau, H. T. (1999). Relaxation to equilibrium of conservative dynamics. I. Zero-range processes. Ann. Probab.27 325-360. · Zbl 0951.60095
[12] Jerrum, M. and Sinclair, A. (1989). Approximating the permanent. SIAM J. Comput.18 1149-1178. · Zbl 0723.05107
[13] Jonasson, J. (2012). Mixing times for the interchange process. ALEA Lat. Am. J. Probab. Math. Stat.9 667-683. · Zbl 1290.60071
[14] Lacoin, H. (2016). Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion. Ann. Probab.44 1426-1487. · Zbl 1408.60061
[15] Landim, C., Sethuraman, S. and Varadhan, S. (1996). Spectral gap for zero-range dynamics. Ann. Probab.24 1871-1902. · Zbl 0870.60095
[16] Levin, D. A. and Peres, Y. (2017). Markov Chains and Mixing Times, 2nd ed. Amer. Math. Soc., Providence, RI.
[17] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 324. Springer, Berlin. · Zbl 0949.60006
[18] Liggett, T. M. (2005). Interacting Particle Systems. Classics in Mathematics. Springer, Berlin. Reprint of the 1985 original. · Zbl 1103.82016
[19] Merle, M. and Salez, J. (2018). Cutoff for the mean-field zero-range process. Preprint. Available at arXiv:1804.04608.
[20] Montenegro, R. and Tetali, P. (2006). Mathematical aspects of mixing times in Markov chains. Found. Trends Theor. Comput. Sci.1 x+121. · Zbl 1193.68138
[21] Morris, B. (2006). Spectral gap for the zero range process with constant rate. Ann. Probab.34 1645-1664. · Zbl 1111.60077
[22] Oliveira, R. I. (2013). Mixing of the symmetric exclusion processes in terms of the corresponding single-particle random walk. Ann. Probab.41 871-913. · Zbl 1274.60242
[23] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math.5 246-290. · Zbl 0312.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.