×

Iterative multilevel particle approximation for McKean-Vlasov SDEs. (English) Zbl 07120708

Summary: The mean field limits of systems of interacting diffusions (also called stochastic interacting particle systems (SIPS)) have been intensively studied since McKean (Proc. Natl. Acad. Sci. USA56 (1966) 1907–1911) as they pave a way to probabilistic representations for many important nonlinear/nonlocal PDEs. The fact that particles are not independent render classical variance reduction techniques not directly applicable, and consequently make simulations of interacting diffusions prohibitive.
In this article, we provide an alternative iterative particle representation, inspired by the fixed-point argument by Sznitman (In École D’Été de Probabilités de Saint-Flour XIX – 1989 (1991) 165-251, Springer). The representation enjoys suitable conditional independence property that is leveraged in our analysis. We establish weak convergence of iterative particle system to the McKean-Vlasov SDEs (McKV-SDEs). One of the immediate advantages of the iterative particle system is that it can be combined with the Multilevel Monte Carlo (MLMC) approach for the simulation of McKV-SDEs. We proved that the MLMC approach reduces the computational complexity of calculating expectations by an order of magnitude. Another perspective on this work is that we analyse the error of nested Multilevel Monte Carlo estimators, which is of independent interest. Furthermore, we work with state dependent functionals, unlike scalar outputs which are common in literature on MLMC. The error analysis is carried out in uniform, and what seems to be new, weighted norms.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Antonelli, F. and Kohatsu-Higa, A. (2002). Rate of convergence of a particle method to the solution of the McKean-Vlasov equation. Ann. Appl. Probab.12 423-476. · Zbl 1015.60048 · doi:10.1214/aoap/1026915611
[2] Bossy, M. (2004). Optimal rate of convergence of a stochastic particle method to solutions of 1D viscous scalar conservation laws. Math. Comp.73 777-812. · Zbl 1041.65015 · doi:10.1090/S0025-5718-03-01551-5
[3] Bossy, M., Fezoui, L. and Piperno, S. (1997). Comparison of a stochastic particle method and a finite volume deterministic method applied to Burgers equation. Monte Carlo Methods Appl.3 113-140. · Zbl 0962.65075 · doi:10.1515/mcma.1997.3.2.113
[4] Bossy, M. and Jourdain, B. (2002). Rate of convergence of a particle method for the solution of a 1D viscous scalar conservation law in a bounded interval. Ann. Probab.30 1797-1832. · Zbl 1013.60080 · doi:10.1214/aop/1039548372
[5] Bossy, M. and Talay, D. (1996). Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation. Ann. Appl. Probab.6 818-861. · Zbl 0860.60038 · doi:10.1214/aoap/1034968229
[6] Bossy, M. and Talay, D. (1997). A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp.66 157-192. · Zbl 0854.60050 · doi:10.1090/S0025-5718-97-00776-X
[7] Buckdahn, R., Li, J., Peng, S. and Rainer, C. (2017). Mean-field stochastic differential equations and associated PDEs. Ann. Probab.45 824-878. · Zbl 1402.60070 · doi:10.1214/15-AOP1076
[8] Bujok, K., Hambly, B. M. and Reisinger, C. (2015). Multilevel simulation of functionals of Bernoulli random variables with application to basket credit derivatives. Methodol. Comput. Appl. Probab.17 579-604. · Zbl 1327.65003 · doi:10.1007/s11009-013-9380-5
[9] Carmona, R., Delarue, F. and Lachapelle, A. (2013). Control of McKean-Vlasov dynamics versus mean field games. Math. Financ. Econ.7 131-166. · Zbl 1269.91012 · doi:10.1007/s11579-012-0089-y
[10] Chassagneux, J.-F., Crisan, D. and Delarue, F. (2014). A probabilistic approach to classical solutions of the master equation for large population equilibria. Available at arXiv:1411.3009. · Zbl 1520.91003
[11] Delarue, F., Inglis, J., Rubenthaler, S. and Tanré, E. (2015). Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. Ann. Appl. Probab.25 2096-2133. · Zbl 1322.60085 · doi:10.1214/14-AAP1044
[12] Delarue, F., Inglis, J., Rubenthaler, S. and Tanré, E. (2015). Particle systems with a singular mean-field self-excitation. Application to neuronal networks. Stochastic Process. Appl.125 2451-2492. · Zbl 1328.60134 · doi:10.1016/j.spa.2015.01.007
[13] E, W., Hutzenthaler, M., Jentzen, A. and Kruse, T. (2016). On full history recursive multilevel Picard approximations and numerical approximations of high-dimensional nonlinear parabolic partial differential equations. Available at arXiv:1607.03295. · Zbl 1418.65149
[14] Friedman, A. (2006). Stochastic Differential Equations and Applications. Courier Corporation.
[15] Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Oper. Res.56 607-617. · Zbl 1167.65316 · doi:10.1287/opre.1070.0496
[16] Giles, M. B., Nagapetyan, T. and Ritter, K. (2015). Multilevel Monte Carlo approximation of distribution functions and densities. SIAM/ASA J. Uncertain. Quantificat.3 267-295. · Zbl 1322.65014 · doi:10.1137/140960086
[17] Haji-Ali, A.-L. and Tempone, R. (2018). Multilevel and multi-index Monte Carlo methods for the McKean-Vlasov equation. Stat. Comput.28 923-935. · Zbl 1387.65004 · doi:10.1007/s11222-017-9771-5
[18] Heinrich, S. (2001). Multilevel Monte Carlo methods. In Large-Scale Scientific Computing 58-67. Springer. · Zbl 1031.65005
[19] Kebaier, A. (2005). Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing. Ann. Appl. Probab.15 2681-2705. · Zbl 1099.65011 · doi:10.1214/105051605000000511
[20] Krylov, N. V. (1980). Controlled Diffusion Processes. Applications of Mathematics14. Springer, New York. Translated from the Russian by A. B. Aries. · Zbl 0436.93055 · doi:10.1070/SM1980v037n01ABEH001946
[21] Krylov, N. V. (2002). Introduction to the Theory of Random Processes. Graduate Studies in Mathematics43. Amer. Math. Soc., Providence, RI. · Zbl 1008.60001
[22] Lemaire, V. and Pagès, G. (2017). Multilevel Richardson-Romberg extrapolation. Bernoulli23 2643-2692. · Zbl 1383.65003 · doi:10.3150/16-BEJ822
[23] McKean, H. P. Jr. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA56 1907-1911. · Zbl 0149.13501 · doi:10.1073/pnas.56.6.1907
[24] Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995). Lecture Notes in Math.1627 42-95. Springer, Berlin. · Zbl 0864.60077
[25] Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Probability and Mathematical Statistics3. Academic Press, New York. · Zbl 0153.19101
[26] Pope, S. B. (2000). Turbulent Flows. Cambridge Univ. Press, Cambridge. · Zbl 0966.76002
[27] Ricketson, L. F. (2015). A multilevel Monte Carlo method for a class of McKean-Vlasov processes. Available at arXiv:1508.02299.
[28] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math.1464 165-251. Springer, Berlin. · Zbl 0732.60114
[29] Talay, D. and Tubaro, L. (1990). Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl.8 483-509 (1991). · Zbl 0718.60058 · doi:10.1080/07362999008809220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.