Murakami, Kazuaki On an upper bound of \(\lambda\)-invariants of \(\mathbb{Z}_p\)-extensions over an imaginary quadratic field. (English) Zbl 1471.11271 J. Math. Soc. Japan 71, No. 3, 1005-1026 (2019). Summary: For an odd prime number \(p\), we give an explicit upper bound of \(\lambda\)-invariants for all \(\mathbb{Z}_p\)-extensions of an imaginary quadratic field \(k\) under several assumptions. We also give an explicit upper bound of \(\lambda\)-invariants for all \(\mathbb{Z}_p\)-extensions of \(k\) in the case where the \(\lambda\)-invariant of the cyclotomic \(\mathbb{Z}_p\)-extension of \(k\) is equal to 3. Cited in 2 Documents MSC: 11R23 Iwasawa theory 11R11 Quadratic extensions Keywords:Iwasawa invariant; \(\mathbb{Z}_p\)-extension; \(\mathbb{Z}_p^2\)-extension; imaginary quadratic field PDF BibTeX XML Cite \textit{K. Murakami}, J. Math. Soc. Japan 71, No. 3, 1005--1026 (2019; Zbl 1471.11271) Full Text: DOI Euclid OpenURL References: [1] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121-124. · Zbl 0171.01105 [2] R. Greenberg, The Iwasawa invariants of \(\Gamma\)-extensions of a fixed number field, Amer. J. Math., 95 (1973), 204-214. · Zbl 0268.12005 [3] R. Greenberg, Iwasawa theory—past and present, In: Class Field Theory—Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 335-385. · Zbl 0998.11054 [4] S. Fujii, On a bound of \(\lambda\) and the vanishing of \(\mu\) of \(\mathbb{Z}_p\)-extensions of an imaginary quadratic field, J. Math. Soc. Japan, 65 (2013), 277-298. · Zbl 1275.11141 [5] K. Iwasawa, On \(\Gamma\)-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183-226. · Zbl 0089.02402 [6] J. F. Jaulent and J. W. Sands, Sur quelques modules d’Iwasawa semi-simples, Compositio Math., 99 (1995), 325-341. · Zbl 0869.11084 [7] T. Kataoka, A consequence of Greenberg’s generalized conjecture on Iwasawa invariants of \(\mathbb{Z}_p\)-extensions, J. Number Theory, 172 (2017), 200-233. · Zbl 1356.11080 [8] S. Lang, Cyclotomic fields I and II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990. [9] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Second edition, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008. · Zbl 1136.11001 [10] K. Okano, Abelian \(p\)-class field towers over the cyclotomic \(\mathbb{Z}_p\)-extensions of imaginary quadratic fields, Acta Arith., 125 (2006), 363-381. · Zbl 1155.11051 [11] M. Ozaki, Iwasawa invariants of \(\mathbb{Z}_p\)-extensions over an imaginary quadratic field, In: Class Field Theory—Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 387-399. · Zbl 1002.11078 [12] J. W. Sands, On small Iwasawa invariants and imaginary quadratic fields, Proc. Amer. Math. Soc., 112 (1991), 671-684. · Zbl 0735.11056 [13] L. C. Washington, Introduction to cyclotomic fields, Second edition, Grad. Texts in Math., 83, Springer-Verlag, New York, 1997. · Zbl 0966.11047 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.