×

zbMATH — the first resource for mathematics

Vertex-based preconditioners for the coarse problems of BDDC. (English) Zbl 1425.65044

MSC:
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Badia, A. F. Martín, and J. Principe, Multilevel balancing domain decomposition at extreme scale, SIAM J. Sci. Comput., 38 (2016), pp. C22–C52, https://doi.org/10.1137/15M1013511.
[2] T. Blacker, S.-J. Owen, M. L. Staten, W. R. Quadros, B. Hanks, B. W. Clark, R. J. Meyers, C. Ernst, K. Merkley, R. Morris, C. McBride, C. J. Stimpson, M. Plooster, and S. Showman, CUBIT, Geometry and Mesh Generation Toolkit, 15.3 User Documentation, SAND2017-6895 W, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2017.
[3] S. C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer-Verlag, New York, 2008.
[4] S. C. Brenner and L.-Y. Sung, BDDC and FETI–DP without matrices or vectors, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1429–1435. · Zbl 1173.65363
[5] E. T. Chung, H. H. Kim, and O. B. Widlund, Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method, SIAM J. Numer. Anal., 51 (2013), pp. 47–67, https://doi.org/10.1137/S0036142900378480. · Zbl 1267.65193
[6] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.
[7] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization, SIAM J. Sci. Comput., 25 (2003), pp. 246–258, https://doi.org/10.1137/S1064827502412887. · Zbl 1038.65039
[8] C. R. Dohrmann, An approximate BDDC preconditioner, Numer. Linear Algebra Appl., 14 (2007), pp. 149–168.
[9] C. R. Dohrmann and O. B. Widlund, On the design of small coarse spaces for domain decomposition algorithms, SIAM J. Sci. Comput., 39 (2017), pp. A1466–A1488, https://doi.org/10.1137/17M1114272.
[10] M. Dryja, M. V. Sarkis, and O. B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions, Numer. Math., 72 (1996), pp. 313–348. · Zbl 0857.65131
[11] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7 (2000), pp. 687–714. · Zbl 1051.65119
[12] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen, FETI-DP: A dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg., 50 (2001), 1523–1544. · Zbl 1008.74076
[13] M.A. Heroux and J.M. Willenbring, Trilinos Users Guide, Technical Report SAND2003-2952, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2003.
[14] A. Heinlein, A. Klawonn, O. Rheinbach, and O. B. Widlund, Improving the parallel performance of overlapping Schwarz methods by using a smaller energy minimizing coarse space, in Proceedings of the 24th International Conference on Domain Decomposition, Svalbard, Norway, 2017. · Zbl 1367.65043
[15] G. Karypis, R. Aggarwal, K. Schoegel, V. Kumar, and S. Shekhar, METIS home page, http://glaros.dtc.umn.edu/gkhome/views/metis.
[16] A. Klawonn and O. Rheinbach, Robust FETI-DP methods for heterogeneous three dimensional linear elasticity problems, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1400–1414. · Zbl 1173.74428
[17] A. Klawonn and O. Rheinbach, Inexact FETI-DP methods, Internat. J. Numer. Methods Engrg., 69 (2007), pp. 284–307.
[18] A. Klawonn, O.B. Widlund, and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal., 40 (2002), pp. 159–179, https://doi.org/10.1137/S0036142901388081. · Zbl 1032.65031
[19] A. Klawonn, O. Rheinbach, and O. B. Widlund, An analysis of a FETI–DP algorithm on irregular subdomains in the plane, SIAM J. Numer. Anal., 46 (2008), pp. 2484–2504, https://doi.org/10.1137/070688675. · Zbl 1176.65135
[20] A. Klawonn and O. B. Widlund, Dual-Primal FETI methods for linear elasticity, Comm. Pure Appl. Math., 59 (2006), pp. 1523–1572. · Zbl 1110.74053
[21] A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods with face constraints, Recent Developments in Domain Decomposition Methods, Zürich, 2001, L. F. Pavarino and A. Toselli, eds., Lect. Notes Comput. Sci. Eng. 23, Springer, Berlin, 2002, pp. 27–40. · Zbl 1009.65069
[22] J. Li and O. B. Widlund, FETI–DP, BDDC, and block Cholesky methods, Internat. J. Numer. Methods Engrg., 66 (2006), pp. 250–271.
[23] J. Li and O. B. Widlund, On the use of inexact subdomain solvers for BDDC algorithms, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1415–1428. · Zbl 1173.65365
[24] J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639–659. · Zbl 1071.65558
[25] J. Mandel, C. R. Dohrmann, and R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math., 54 (2005), pp. 167–193. · Zbl 1076.65100
[26] J. Mandel, B. Sousedík, and C. R. Dohrmann, Multispace and multilevel BDDC, Computing, 83 (2008), pp. 55–85.
[27] D. Oh, O. B. Widlund, S. Zampini, and C. R. Dohrmann, BDDC algorithms with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector fields, Math. Comp., 87 (2018), pp. 659–-692. · Zbl 1380.65065
[28] L. F. Pavarino, S. Scaccchi, O. B. Widlund, and S. Zampini, Isogeometric BDDC deluxe preconditioners for linear elasticity, Math. Models Methods Appl. Sci., 28 (2018), pp. 1337–1370. · Zbl 1391.65059
[29] C. Pechstein and C. R. Dohrmann, A unified framework for adaptive BDDC, Electron. Trans. Numer. Anal., 46 (2017), pp. 273–336.
[30] B. Sousedík, J. Šístek, and J. Mandel, Adaptive-multilevel BDDC and its parallel implementation, Computing, 95 (2013), pp. 1087–1119.
[31] J. Toivanen, P. Avery, and C. Farhat, A multi-level FETI-DP method and its performance for problems with billions of degrees of freedom, Internat. J. Numer. Methods Engrg., 116 (2018), pp. 661–682.
[32] A. Toselli and O. B. Widlund, Domain Decomposition Methods—Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer-Verlag, Berlin, 2005.
[33] X. Tu, Three-level BDDC in two dimensions, Internat. J. Numer. Methods Engrg., 69 (2007), pp. 33–59. · Zbl 1134.65087
[34] X. Tu, Three-level BDDC in three dimensions, SIAM J. Sci. Comput., 79 (2007), pp. 1759–1780, https://doi.org/10.1137/050629902. · Zbl 1163.65094
[35] S. Zampini, PCBDDC: A class of robust dual-primal methods in PETSc, SIAM J. Sci. Comput., 38 (2016), pp. S282–S306, https://doi.org/10.1137/15M1025785. · Zbl 1352.65632
[36] S. Zampini, Stefano, and X. Tu, Multilevel balancing domain decomposition by constraints deluxe algorithms with adaptive coarse spaces for flow in porous media, SIAM J. Sci. Comput., 39 (2017), pp. A1389–A1415, https://doi.org/10.1137/16M1080653. · Zbl 1426.76582
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.