×

zbMATH — the first resource for mathematics

Nonsymmetric reduction-based algebraic multigrid. (English) Zbl 1436.65027

MSC:
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35L02 First-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. P. Adams, M. L. Adams, and W. D. Hawkins, Provably optimal parallel transport sweeps on regular grids, in International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering, Sun Valley, Idaho, 2013, pp. 2535–2553.
[2] F. L. Alvarado and R. Schreiber, Optimal parallel solution of sparse triangular systems, SIAM J. Sci. Comput., 14 (1993), pp. 446–460, https://doi.org/10.1137/0914027. · Zbl 0774.65011
[3] S. Amarala and J. W. L. Wan, Multigrid methods for systems of hyperbolic conservation laws, Multiscale Model. Simul., 11 (2013), pp. 586–614, https://doi.org/10.1137/110851316. · Zbl 1299.65224
[4] E. Anderson and Y. Saad, Solving sparse triangular linear systems on parallel computers, International Journal of High Speed Computing, 1 (1989), pp. 73–95. · Zbl 0726.65026
[5] T. S. Bailey and R. D. Falgout, Analysis of massively parallel discrete-ordinates transport sweep algorithms with collisions, in International Conference on Mathematics, Computational Methods, and Reactor Physics, Saratoga Springs, NY, 2009, Lawrence Livermore National Laboratory, Livermore, pp. 1751–1765.
[6] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, Scaling Hypre’s Multigrid Solvers to 100,000 Cores, in High-Performance Scientific Computing, Springer, London, 2012, pp. 261–279.
[7] W. N. Bell, L. N. Olson, and J. B. Schroder, PyAMG: Algebraic Multigrid Solvers in Python v3.0, release 3.0, https://github.com/pyamg/, 2015.
[8] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137. · Zbl 1115.65034
[9] A. Bienz, R. D. Falgout, W. Gropp, L. N. Olson, and J. B. Schroder, Reducing parallel communication in algebraic multigrid through sparsification, SIAM J. Sci. Comput., 38 (2016), pp. S332–S357, https://doi.org/10.1137/15M1026341. · Zbl 1352.65102
[10] A. Brandt, S. F. McCormick, and J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, Sparsity and its Applications, Cambridge University Press, Cambridge, 1985, pp. 257–284.
[11] J. Brannick, F. Cao, K. Kahl, R. D. Falgout, and X. Hu, Optimal interpolation and compatible relaxation in classical algebraic multigrid, SIAM J. Sci. Comput., 40 (2018), pp. A1473–A1493, https://doi.org/10.1137/17M1123456. · Zbl 1448.65258
[12] J. J. Brannick, A. Frommer, K. Kahl, S. P. MacLachlan, and L. T. Zikatanov, Adaptive reduction-based multigrid for nearly singular and highly disordered physical systems, Electron. Trans. Numer. Anal., 37 (2010), pp. 276–295. · Zbl 1205.65321
[13] M. Brezina, T. A. Manteuffel, S. F. McCormick, J. W. Ruge, and G. Sanders, Towards adaptive smoothed aggregation \((\alpha\) SA) for nonsymmetric problems, SIAM J. Sci. Comput., 32 (2010), pp. 14–39, https://doi.org/10.1137/080727336. · Zbl 1210.65075
[14] F. Brezzi, L. D. Marini, and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14 (2004), pp. 1893–1903. · Zbl 1070.65117
[15] W. L. Briggs, V. E. Henson, and S. F. McCormick, 2nd ed., A Multigrid Tutorial, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719505.
[16] A. N. Brooks and T. J. Hughes, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199–259. · Zbl 0497.76041
[17] L. M. Carvalho, L. Giraud, and P. Le Tallec, Algebraic two-level preconditioners for the Schur complement method, SIAM J. Sci. Comput., 22 (2001), pp. 1987–2005, https://doi.org/10.1137/S1064827598340809. · Zbl 0990.65134
[18] G. Colomer, R. Borrell, F. X. Trias, and I. Rodríguez, Parallel algorithms for SN transport sweeps on unstructured meshes, J. Comput. Phys., 232 (2013), pp. 118–135.
[19] H. De Sterck, R. D. Falgout, J. W. Nolting, and U. M. Yang, Distance-two interpolation for parallel algebraic multigrid, Numer. Linear Algebra Appl., 15 (2008), pp. 115–139. · Zbl 1212.65139
[20] D. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques et Applications, Springer, Heidelberg, 2012. · Zbl 1231.65209
[21] V. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, Two-level convergence theory for multigrid reduction in time (MGRIT), SIAM J. Sci. Comput., 39 (2017), pp. S501–S527, https://doi.org/10.1137/16M1074096.
[22] R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B. Schroder, Multigrid reduction in time for nonlinear parabolic problems: A case study, SIAM J. Sci. Comput., 39 (2017), pp. S298–S322, https://doi.org/10.1137/16M1082330.
[23] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C635–C661, https://doi.org/10.1137/130944230.
[24] R. D. Falgout and J. E. Jones, Multigrid on massively parallel architectures, in Multigrid Methods, VI (Gent, 1999), Lect. Notes Comput. Sci. Eng. 14, Springer, Berlin, 2000, pp. 101–107. · Zbl 0972.65110
[25] R. D. Falgout and J. B. Schroder, Non-Galerkin coarse grids for algebraic multigrid, SIAM J. Sci. Comput., 36 (2014), pp. C309–C334, https://doi.org/10.1137/130931539.
[26] R. D. Falgout and P. S. Vassilevski, On Generalizing the algebraic multigrid framework, SIAM J. Numer. Anal., 42 (2004), pp. 1669–1693, https://doi.org/10.1137/S0036142903429742. · Zbl 1077.65129
[27] R. D. Falgout and U. M. Yang, HYPRE: A library of high performance preconditioners, European Conference on Parallel Processing, Lecture Notes in Comput. Sci. 2331, Springer, Berlin, Heidelberg, 2002, pp. 632–641. · Zbl 1056.65046
[28] H. Foerster, K. Stüben, and U. Trottenberg, Non-standard multigrid techniques using checkered relaxation and intermediate grids, in Elliptic Solvers, Academic Press, New York, 1981, pp. 285–300.
[29] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, ML 5.0 Smoothed Aggregation User’s Guide, Tech. Report SAND2006-2649, Sandia National Laboratories, 2006.
[30] T. S. Haut, P. G. Maginot, V. Z. Tomov, B. S. Southworth, T. A. Brunner, and T. S. Bailey, An efficient sweep-based solver for the \(S_N\) equations on high-order meshes, Nucl. Sci. Eng., 193 (2019), pp. 746–759.
[31] W. Hawkins, Efficient massively parallel transport sweeps, in Transactions of the American Nuclear Society 107, Texas A & M University, College Station, TX, 2012, pp. 477–481.
[32] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155–177. · Zbl 0995.65128
[33] P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boor, ed., Academic Press, New York, 1974, pp. 89–123.
[34] R. Li and Y. Saad, GPU-accelerated preconditioned iterative linear solvers, J. Supercomput., 63 (2013), pp. 443–466.
[35] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter, A synchronization-free algorithm for parallel sparse triangular solves, in European Conference on Parallel Processing, Lecture Notes in Comput. Sci. 9833, Springer, Cham, 2016, pp. 617–630.
[36] J. Lottes, Towards Robust Algebraic Multigrid Methods for Nonsymmetric Problems, Springer, Cham, 2017.
[37] S. P. MacLachlan, T. A. Manteuffel, and S. F. McCormick, Adaptive reduction-based AMG, Numer. Linear Algebra Appl., 13 (2006), pp. 599–620. · Zbl 1174.65549
[38] J. Mandel, On block diagonal and Schur complement preconditioning, Numer. Math., 58 (1990), pp. 79–93.
[39] T. A. Manteuffel, L. N. Olson, J. B. Schroder, and B. S. Southworth, A root-node based algebraic multigrid method, SIAM J. Sci. Comput., 39 (2017), pp. S723–S756, https://doi.org/10.1137/16M1082706. · Zbl 1392.65064
[40] T. Manteuffel and B. S. Southworth, Convergence in norm of nonsymmetric algebraic multigrid, SIAM J. Sci. Comput., 41 (2019), pp. S269–S296, https://doi.org/10.1137/18M1193773.
[41] C. Mense and R. Nabben, On algebraic multi-level methods for non-symmetric systems–Comparison results, Linear Algebra Appl., 429 (2008), pp. 2567–2588. · Zbl 1156.65032
[42] C. Mense and R. Nabben, On algebraic multilevel methods for non-symmetric systems—convergence results, Electron. Trans. Numer. Anal., 30 (2008), pp. 323–345. · Zbl 1171.65022
[43] J. E. Morel and J. S. Warsa, An \(S_n\) spatial discretization scheme for tetrahedral meshes, Nucl. Sci. Eng., 151 (2005), pp. 157–166.
[44] J. E. Morel and J. S. Warsa, Spatial finite-element lumping techniques for the quadrilateral mesh \(S_n\) equations in X-Y geometry, Nucl. Sci. Eng., 156 (2007), pp. 325–342.
[45] Y. Notay, A robust algebraic multilevel preconditioner for non-symmetric M-matrices, Numer. Linear Algebra Appl., 7 (2000), pp. 243–267. · Zbl 1051.65058
[46] Y. Notay, Algebraic analysis of two-grid methods: The nonsymmetric case, Numer. Linear Algebra Appl., 17 (2010), pp. 73–96. · Zbl 1240.65358
[47] Y. Notay, Analysis of Two-Grid Methods: The Nonnormal Case, Tech. Report GANMN 18-01, 2018.
[48] L. N. Olson, J. B. Schroder, and R. S. Tuminaro, A general interpolation strategy for algebraic multigrid using energy minimization, SIAM J. Sci. Comput., 33 (2011), pp. 966–991, https://doi.org/10.1137/100803031. · Zbl 1233.65096
[49] C. W. Oosterlee, F. J. Gaspar, T. Washio, and R. Wienands, Multigrid line smoothers for higher order upwind discretizations of convection-dominated problems, J. Comput. Phys., 139 (1998), pp. 274–307. · Zbl 0908.65111
[50] H. Park, D. A. Knoll, R. M. Rauenzahn, C. K. Newman, J. D. Densmore, and A. B. Wollaber, An efficient and time accurate, moment-based scale-bridging algorithm for thermal radiative transfer problems, SIAM J. Sci. Comput., 35 (2013), pp. S18–S41, https://doi.org/10.1137/120881075. · Zbl 1285.65092
[51] J. C. Ragusa, J. L. Guermond, and G. Kanschat, A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes, J. Comput. Phys., 231 (2012), pp. 1947–1962. · Zbl 1245.82063
[52] W. Reed and T. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
[53] M. Ries, U. Trottenberg, and G. Winter, A note on MGR methods, Linear Algebra Appl., 49 (1983), pp. 1–26.
[54] J. W. W. Ruge and K. Stüben, Algebraic multigrid, Multigrid Methods, Frontiers Appl. Math. 3, SIAM, Philadelphia, 1987, pp. 73–130.
[55] Y. Saad and M. Sosonkina, Distributed Schur complement techniques for general sparse linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 1337–1356, https://doi.org/10.1137/S1064827597328996. · Zbl 0955.65020
[56] M. Sala and R. S. Tuminaro, A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 143–166, https://doi.org/10.1137/060659545. · Zbl 1183.76673
[57] J. B. Schroder, Smoothed aggregation solvers for anisotropic diffusion, Numer. Linear Algebra Appl., 19 (2012), pp. 296–312.
[58] T. A. Manteuffel, J. W. Ruge and B. S. Southworth, Nonsymmetric algebraic multigrid based on local approximate ideal restriction \((\ell\) AIR), SIAM J. Sci. Comput., 40 (2018), pp. A4105–A4130, https://doi.org/10.1137/17M1144350. · Zbl 1412.65130
[59] E. Treister and I. Yavneh, Non-Galerkin multigrid based on sparsified smoothed aggregation, SIAM J. Sci. Comput., 37 (2015), pp. A30–A54, https://doi.org/10.1137/140952570. · Zbl 1327.65264
[60] P. S. Vassilevski, Multilevel Block Factorization Preconditioners, in Matrix-based Analysis and Algorithms for Solving Finite Element Equations, Springer, New York, 2008. · Zbl 1170.65001
[61] T. A. Wiesner, R. S. Tuminaro, W. A. Wall, and M. W. Gee, Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections, Numer. Linear Algebra Appl., 21 (2014), pp. 415–438. · Zbl 1340.65305
[62] D. N. Woods, T. A. Brunner, and T. S. Palmer, High order finite element \(S_n\) transport in \(x-y\) geometry on meshes with curved surfaces, Trans. Am. Nucl. Soc., 114 (2016), pp. 377–380.
[63] X. Xu and C.-S. Zhang, On the ideal interpolation operator in algebraic multigrid methods, SIAM J. Numer. Anal., 56 (2018), pp. 1693–1710, https://doi.org/10.1137/17M1162779. · Zbl 1394.65027
[64] I. Yavneh, C. H. Venner, and A. Brandt, Fast multigrid solution of the advection problem with closed characteristics, SIAM J. Sci. Comput., 19 (1998), pp. 111–125, https://doi.org/10.1137/S1064827596302989. · Zbl 0911.76051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.